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Abstract. Modern breeding technologies are capable of producing hundreds of 
new varieties daily, so fast, simple and effective methods for screening valuable 
candidate plant materials are urgently needed. Final yield is a significant 
agricultural trait in rice breeding. In the screening and evaluation of the rice 
varieties, measuring and evaluating rice yield is essential. Conventional means of 
measuring rice yield mainly depend on manual determination, which is tedious, 
labor-intensive, subjective and error-prone, especially when large-scale plants 
were to be investigated. This paper presented an in vivo, automatic and 
high-throughput method to estimate the yield of individual pot-grown rice plant 
using multi-angle RGB imaging and image analysis. In this work, we 
demonstrated a new idea of estimating rice yield from projected panicle area, 
projected area of leaf and stem and fractal dimension. 5-fold cross validation 
showed that the predictive error was 7.45%. The constructed model achieved 
promising results on rice plants grown both in-door and out-door. The presented 
work has the potential of accelerating yield estimation and would be a promising 
impetus for plant phenomics. 
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1 Introduction 

The growing population and the impact of changing climate on agriculture have put 
major crisis on world’s food supply[1]. 70% more food is needed by 2050 according to 
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the recent Declaration of World Summit on Food Security (www.fao.org/wsfs/ 
world-summit/en/). As the staple food for over half of the world’s population[2], rice 
production is significant for the food security of the world. Modern breeding 
technologies are capable of producing hundreds of new varieties daily, so fast, simple 
and effective methods for screening valuable candidate plant materials are urgently 
needed[3]. Phenotyping the interested populations is widely deemed as the most 
laborious, costly and technically challenging part in plant breeding. Plant phenotyping 
has become one of the new bottlenecks in plant science and plant breeding[4, 5]. Plant 
phenomics enables the acceleration of progress in linking gene function, phenotype, 
and environmental responses, which will eventually accelerate plant breeding to 
develop new germplasm to meet the future food demanding. 

Digital image analysis has been proved an effective tool in plant phenomics. There 
has been research on the application of image analysis for phenotyping of an individual 
plant. Yang et. al adopted x-ray computed tomography to measure rice tiller number. 
Utilization of digital imaging and image analysis, Granier et al. estimate growth rates 
from projected leaf area for Arabidopsis plants [6]. Golzarian et. al [7]used the 
projected shoot area of the cereal plants on images at three orthogonal views and plant 
age in days after planting as predictors to infer the cereal biomass. Jones et al. 
quantified plant responses to water stress from thermal infrared images of crop 
canopies[8]. 

Final yield is a significant agricultural trait in rice breeding. In the screening and 
evaluation of the rice varieties, measuring and evaluating rice yield is essential. 
Conventional means of measuring rice yield mainly depend on manual determination.  
In this method, spikelets were threshed from the panicles and filled spikelets were 
weighed. Generally, manual measurement is tedious, labor-intensive, subjective and 
error-prone, especially when large-scale plants were to be investigated.  

There has been work on yield-related trait measurement[9, 10]. In these works, rice 
panicles were harvested from the plant and spikelets were threshed manually or by the 
threshing machine. The major limit is that, the threshing machine had a threshing error 
of 3.33% for filled spikelets and 2.27% for total spikelets, and was prone to break the 
spikelets. Precision agriculture using remote sensing technology, in which the yield of 
the above-ground canopy for a large area is estimated from satellite and airborne 
images, is a wide-spread method for yield prediction [11-14]. However, this technology 
is not capable of estimating yield of an individual plant. For yield estimation of 
individual plant in vivo, academic publication is unavailable. 

The objective of the present study is to develop an in vivo, automatic and 
high-throughput method to estimate the yield of individual pot-grown rice plant using 
multi-angle RGB imaging and image analysis. In this work, we demonstrated a model 
that used mixed variables of projected panicle area, projected area of leaf and stem, and 
fractal dimension achieved good performance in predicting rice yield. In order to 
improve the generalization ability of our method, we tested our method on rice plants 
grown both in-door and out-door and achieved promising results.  
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2 Experiments and Methods 

2.1 Rice Sample Preparation 

390 pot-grown rice plants, including 302 rice plants growing in the greenhouse 
(greenhouse rice) and 88 rice plants growing outdoor (outdoor rice), were used in this 
study. The samples were harvested at maturing stage and rice yield were measured 
manually. Yield varied from 7.04 g-43.10 g for the greenhouse rice and 23.68 g-58.43 g 
for the outdoor rice. The average yield for the greenhouse rice and outdoor rice were 
27.55 g and 41.20 g, respectively. The samples were randomly split into two datasets at 
ratio of 2:1: a training dataset for model construction (260 plants) and a validation 
dataset for model validation (130 plants).  

2.2 Hardware Setup and Image Acquisition 

Previously, our group developed a high-throughput facility dubbed H-SMART for 
measuring rice tiller number[3]. The H-SMART facility used an industrial conveyor to 
transfer pot-grown rice plant to the imaging area for image acquisition. A rotation 
platform enabled the rice plants to be lifted and turned. A barcode scanner read barcode 
of each pot for indexing purpose. To allow measurement of rice yield, we incorporated 
visible light imaging into the H-SMART facility. As occlusion becomes problematic in 
rice plants at maturing stage, multi-angle imaging was adopted in the research. Plants 
were illustrated by fluorescent light tubes both from side and top. Images were taken at 
every 30°intervals by a Charge Coupled Device (CCD) camera (Stingray F-504C, 
Applied Vision Technologies, Germany) as the plant was rotated. For each rice plant, 
12 images (2452×2056) at different angles were taken. Lighting conditions were 
constant throughout the research. Image acquisition was performed by NI-IMAQ 
Virtual Instruments (VI) Library for LabVIEW (National Instruments Corporation, 
USA). More details concerning the H-SMART system can be found in Yang et al. 
2011[3].  

2.3 Image Analysis and Feature Extraction 

Glozarian et al. proved projected shoot area on two dimensional images was a good 
predictor of shoot biomass of the cereal plants[7]. And rice yield was the product of the 
harvest index and the biomass (more precisely, the total dry weight)[15]. It can be 
inferred that projected shoot area should have a good correlation with yield. Panicle 
was the organ where grains grow on. So projected panicle area may correlate well with 
yield. For this reason, we raised a hypothesis that separating the projected shoot area 
into two parts: projected panicle area and projected area of leaves and stems would 
reduce the bias in yield estimation. Gong demonstrated the feasibility of predicting 
yield per m2 for field rice from fractal dimension and texture features of the rice 
image[16]. In this study, we developed a model using projected panicle area, projected 
area of leaves and stems, fractal dimension and texture features. 

The image analysis and feature extraction was performed in LabVIEW(National 
Instruments Corporation, USA). Fig. 1 shows the image analysis pipeline for this study. 
Firstly, the background was removed from the image to get the binary image of rice 
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plant, from which projected area of rice plant (A) and information dimension (IFD) 
were calculated. Intensity image of the RGB image was extracted according to Eq. 1. 
Using the binary image as the mask, intensity component of rice plant, from which 
texture features including differential box counting dimension (DBC) [17] and 5 
histogram features were calculated, can be obtained. 5 histogram features include the 
mean value (M), the standard deviation (S), the third moment (mu3), the uniformity (U) 
and the entropy (E). After that, pixel discrimination and region recognition were 
performed to obtain the binary image of panicle, from which projected panicle area 
(PA) was calculated.  

I=(R+G+B)/3                                        (1) 

where R, G, B was the R, G, B component of the RGB image. 

 

Fig. 1. Image analysis pipeline for this study 

Fig. 2 illustrates the image processing diagram for removing background. First, the 
ExG component and i2 component were extracted according to Eqns. 2-3. The ExG 
component was used to segment the green parts of the rice plant, and the i2 component 
was used to segment the yellow parts. The images in this study were captured in a 
constant illustration environment, so both the ExG component and i2 component were 
binarized using fixed thresholds. Then the union of the two binary images was 
calculated. In the end, regions whose area was less than the predefined threshold were 
removed. Projected area of rice plant (A) was computed by counting the number of 
foreground pixels in the binary image of rice plant.  

ExG = 2Ng-Nr-Nb                                (2) 

i2= (R-B)/2                                    (3) 

where Ng, Nr, Nb was the normalized r,g,b component, defined by Eqns. 4-6. 
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    Nr=R/(R+G+B)                                 (4) 

Ng=G/(R+G+B)                                 (5) 

   Nb=B/(R+G+B)                                 (6) 

 

Fig. 2. Image processing diagram for removing background 

Fractal dimension can be used to describe shape complexity[18]. The most 
commonly used method for calculating fractal dimension is box-counting method as it 
is simple to compute. In this research, the authors adopted information dimension, as it 
provides a more precise estimate of the fractal dimension than the box-counting method 
and meanwhile is easy to compute. IFD is calculated by plotting information I(ε) 
(defined as Eq. 7) against the natural logarithm of box size ε and IFD is computed as the 
slope of the regression line.  
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                                      (7) 

Where N  is the number of boxes, ε is the box size, ip  is the probability of 
foreground pixels falling into the ith box. 

Fig. 3 indicates the image processing diagram for generating binary image of 
panicle. Pixel discrimination between panicle and stem/leaf (non-panicle) based on 
discriminant analysis was performed to segment the panicle region[19]. There may be 
non-panicle region in the extracted panicle regions after pixel discrimination. So, 
region recognition was used to remove non-panicle regions. Rice yield is mainly 
contributed by effective panicles, which generally locates in the uppermost one third 
region of the rice plant. Therefore, in this study, a simple location discrimination 
method was used to recognize the panicle region. More specifically, the image was 
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equally divided into three sub-regions according to the plant height. Regions that were 
located in the uppermost region were regarded as panicle region and other regions were 
treated as non-panicle regions. Projected panicle area (PA) was computed by counting 
the number of foreground pixels in the binary image of panicle. Projected area of leaf 
and stem (LSA) was computed by A minus PA. 

 

Fig. 3. Image processing diagram for removing background 

2.4 Model Construction and Validation 

In this study, 12 images at different angles were captured. For each image, 9 features 
were extracted, including PA, LSA, IFD, 5 histogram features and DBC. For yield 
prediction, the features were averaged among the 12 angles.  

Linear regression analysis is one of the most widely used methods in agriculture [7, 20, 
21]. In this research, linear regression was used to predict rice yield. Before modeling, all 
the data were log-transformed in order to meet normality assumptions and increase model 
performance[22]. For variable selection and optimal model identification, all-possible 
regression method was performed, using criteria of Akaike’s information (AIC)[23], 
adjusted coefficient of determination (adjusted R2), and prediction error sum of squares 
(PRESS statistic)[24]. Adjusted R2 indicates the proportion of variation explained by the 
predictors and increases on adding a variable only when the variable decreases the residual 
mean square. Taking the complexity of the model into account, AIC is generally regarded 
as a measure of the goodness of fit of the model. PRESS statistic indicates the prediction 
ability of the model. A model with a highest adjusted R2 and lowest AIC and PRESS 
statistic was selected as the final model. Other assumptions requisite to meet the 
specification of the multiple regression analysis, such as significance of the regression, 
significance of individual regression coefficients and multi-collinearity, were also checked. 
Model construction was performed in SAS (version 9.2, SAS Institute Inc., USA).   

For model validation, the final model was tested on the validation dataset. In 
addition, cross validation technique was used to evaluate the prediction error of the 
model[7]. In the cross validation method, the samples are randomly partitioned into K 
approximately equal-sized K groups. In each iteration, the i-th (i=1,2…K) group is 
treated as validation set, and the remaining K-1 groups are used to fit the model. This 
process are repeated for K iterations, and the prediction errors, such as root mean 
square error (RMSE) and mean absolute percentage error (MAPE), are averaged over 
the iterations. Model validation was performed in Matlab ((Mathworks Inc., USA).   
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3 Results and Discussion 

3.1 Image Analysis 

Rice yield is mainly contributed by effective panicles, which generally locates in the 
uppermost one third region of the rice plant. In this study, the candidate panicle regions 
were firstly segmented using discriminant analysis. Then, the panicle regions were 
discriminated from non-panicle regions according to their location. After that, projected 
panicle area (PA) was computed. This method would be fit for most rice varieties. 
However, some rice varieties may have effective panicle that locates in the middle of the 
plant. In this occasion, some panicle regions may be mistaken treated as non-panicle 
regions and consequently the computed projected panicle area may be biased.  

This paper mainly focuses on demonstrating the feasibility of estimating rice yield 
from projected panicle area, projected area of leaf and stem and fractal dimension. 
Improvement of projected panicle area extraction would be our future orientation. 

3.2 Model Development and Validation 

In variable selection and optimal model identification, we noticed that when the number of 
variables in the model was fixed, the model with the highest R2 generally had the lowest 
AIC and PRESS statistic. Therefore, among models with the same number of variables, 
the model with the highest R2 was selected for further consideration to accelerate the 
optimal model identification. This process reduced the number of candidate models to 
nine. Table 1 shows the performance of the nine candidate models.  

When using alone, IFD was the most powerful variable for predicting yield, 
explaining 62.8% of the variation in the 260 training samples.  Combination of PA and 
LSA outperformed other models with two variables, increasing adjusted R2 to 0.87, 
and dramatically reducing AIC and PRESS. When the number of variables in the model 
was more than 4 (excluding constant), adding more variables to the model did not 
produce less AIC and PRESS. The model with four variables IFD, E, PA and LSA had 
the highest Adjusted R2 and lowest AIC and PRESS. However, multi-collinearity was 
noticed in this model (VIF>5).Therefore, the model with three variables (Eq.8 and 
Table 2) was selected as the final model. Model diagnostics suggested that underlying 
assumptions of the regression model were met. 

Model 1: ln(Y)=a0+ a1·ln(PA)+a2·ln(LSA)+a3·ln(IFD)              (8) 

Table 1. Performance of the nine candidate model based on training samples 

Number of variables Adjusted R2 AIC PRESS Variables in the model 
1 0.6284 -940.80 7.01 IFD 
2 0.8725 -1218.04 2.40 PA, LSA 
3 0.8904 -1256.28 2.08 IFD, PA, LSA 
4 0.8917 -1258.37 2.06 IFD, E, PA, LSA 
5 0.8916 -1257.08 2.07 DBC, IFD, E, PA, LSA 
6 0.8917 -1256.44 2.08 IFD, M, S, mu3, PA, LSA 
7 0.8915 -1255.06 2.10 IFD, E, M, S, mu3, PA, LSA 
8 0.8915 -1253.94 2.11 IFD, E, M, S, U, mu3, PA, LSA 
9 0.8910 -1251.98 2.13 DBC, IFD, E, M, S, U, mu3, PA, 

LSA 
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Table 2 shows the summary of the final model based on the training samples. F-test 
value and its significance (P>F) showed that the overall fit of the model was significant. 
The t-test values and its significance (P>|t|) indicated that the individual independent 
variables were statistically significant. Variance inflation factor (VIF) for each 
individual independent variable showed that there was no multi-collinearity between 
the variables. 

Table 2. Summary of the final model based on training samples 

Coefficients 
t P>|t| VIF F P>F R2 RMSE  Value Standard 

error 
a0 -10.613 0.39223 -27.06 <.0001 0 

702.32 <.0001 0.89 2.71 g a1 0.4181 0.01892 22.1 <.0001 1.36293 
a2 0.64369 0.0439 14.66 <.0001 2.09423 
a3 3.67453 0.56133 6.55 <.0001 2.59348 

Fig. 4 shows the plot of residuals versus fitted values ˆln( )Y  of the final model. It 
indicated that the residuals were evenly distributed at the two sides of y=0 and can be 
contained in a horizontal band, suggesting no obvious model defects were existed. In 
addition, no significant differences were presented among outdoor rice and greenhouse 
rice. This meant that the model performed well on both outdoor rice and greenhouse 
rice.  

 

Fig. 4. Plot of residuals against the fitted values ˆln( )Y of the final model 
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The final model with three variables was then applied to the validation dataset and 
performed well (Fig. 5). The RMSE and MAPE for the validation dataset were 3.04 g 
and 7.74%. 

5-fold cross validation showed that the RMSE and MAPE of the final model were 
2.83 g and 7.45%.  

 

Fig. 5. Prediction for testing set using the final model 

3.3 Performance Comparison of the Different Models 

For comparison, we also tested the model using projected shoot area (Eq.9) and the 
model using projected panicle area and projected area of leaf and stem (Eq.10). And 
compared the two models with the model used in this study (Table 3). Separating A into 
PA and LSA significantly reduces the estimation error in yield prediction, which 
proved our hypothesis. And Adding fractal dimension into the model had a slight 
promotion on model performance. This was because that fractal dimension describes 
shape complexity of rice and can compensate the influence of organ occlusion problem 
at a certain degree.  

Model 2: ln(Y)=a0+a1·ln(A)                               (9) 

Model 3: ln(Y)=a0+a1·ln(PA)+a2·ln(LSA)                (10) 
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Table 3. Performance comparison of the three models 

 Training set Validation set Cross validation 
 RMSE (g) MAPE RMSE (g) MAPE RMSE (g) MAPE 
Model 1 2.71 7.16% 3.04 7.74% 2.83 7.45% 
Model 2 4.79 12.03% 5.48 13.82% 5.04 12.74% 
Model 3 2.94 7.76% 3.35 8.48% 3.09 8.08% 

3.4 Performance Comparison of the Models Using Different Numbers of  
Side-View Images 

By increasing number of side-view images, more hidden organs were available to be 
seen and more complete information on plant architecture would be provided. To find 
out the appropriate number of side-view images, the models that used average 
prediction variables from 1, 2, 4 and 6 side-view images were studied. The four models 
were listed as follows. 

Model 4: a single image at angle of 0         
Model 5: two images at the angle of 0 and 90       
Model 6: four images at the angle of 0, 90, 180 and 270       
Model 7: six images at the angle of 0, 60, 120, 180, 240 and 300       

Table 4 shows the performance comparison of the models using different numbers 
of side-view images. 5-fold cross validation indicated that increasing number of 
side-view images would decrease prediction error of the model. However, the 
prediction error reduction was not significant when the number of side-view images 
were larger than 4. In this study, the images were captured by the visible light imaging 
unit that incorporated into our previous H-SMART system. The processing time of the 
H-SMART system was 20 seconds. This time was sufficient for capturing and 
processing 12 side-view images. For this reason, 12 side-view images were used in this 
study. To promote the efficiency of the yield estimation, two perpendicular side-view 
images would generate acceptable results.  

Table 4. Performance comparison of the models using different numbers of side-view images 

Model Number of side-view images 5-fold Cross validation 
RMSE (g) MAPE 

Model 4 1 3.80 10.08% 

Model 5 2 3.13 8.15% 

Model 6 4 3.01  7.87 % 

Model 7 6 2.92 7.77% 

Model 1 12 2.83 7.45% 

4 Conclusions 

This paper presented a non-destructive and high-throughput method to estimate the 
yield of individual pot-grown rice plant using photonics-based technology. And we 
demonstrated a new idea of estimating rice yield from projected panicle area, projected 
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area of leaf and stem and fractal dimension. 5-fold cross validation showed that the 
predictive error was 7.45% with testing rice plants grown both in-door and out-door. 
The presented work has the potential of accelerating yield estimation and would be a 
promising impetus for plant phenomics and high-throughput phenotyping. 
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Additional equations: Definition of the five histogram features.  
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Where Gi was the i-th graylevel, and p(Gi) was the probability of Gi.  
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