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Article history: Plant phenomics has the potential to accelerate progress in understanding gene functions
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Available online 11 April 2015 of rice plants taken from multiple angles. Pot-grown rice plants were transferred via an
industrial conveyer to an imaging chamber. Color images from different angles were
Keywords: automatically acquired as a turntable rotated the plant. The images were then analyzed and
Plant phenotyping the panicle number of each plant was determined. The image analysis pipeline consisted of
Rice panicle number extracting the i2 plane from the original color image, segmenting the image, discriminating
Multi-angle imaging the panicles from the rest of the plant using an artificial neural network, and calculating the
Image analysis panicle number in the current image. The panicle number of the plant was taken as the

maximum of the panicle numbers extracted from all 12 multi-angle images. A total of 105
rice plants during the full heading stage were examined to test the performance of the
method. The mean absolute error of the manual and automatic count was 0.5, with 95.3% of
the plants yielding absolute errors within +1. The method will be useful for evaluating rice
panicles and will serve as an important supplementary method for high-throughput rice
phenotyping.
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1. Introduction

According to the recent Declaration of the World Summit on
Food Security, 70% more food is needed by 2050 to meet the
demands of the increasing population (www.fao.org/wsfs/
world-summit/en/). Global climate change and demand for
biofuel feedstocks have exacerbated this problem, resulting
in growing pressure on crop breeding. Rapid screening for
crops with high yield and increased tolerance to abiotic and
biotic stresses could be an important tool to help meet these
demands [1].

The genome sequencing of Arabidopsis and other crop
varieties has resulted in the accumulation of terabytes of
sequence information that need to be linked with function [2].
However, identifying links between genotype and phenotype
is hampered by inefficient, destructive, and often subjective
manual phenotyping [3,4]. High-throughput phenotyping
has become the new bottleneck in plant biology and crop
breeding [5].

Plant phenomics promises to accelerate progress in
understanding gene function and environmental responses
[6]. There has been progress in automating plant phenotyping,
including automated counts of plant parts [7-9] and whole
adult plants [10-12]. Efforts have also been made to develop
automated growth and observation facilities, such as at the
High Resolution Plant Phenomics Centre in Australia, the
Jilich Plant Phenotyping Centre in Germany, the Leibniz
Institute of Plant Genetics and Crop Plant Research in
Germany, and the French National Institute for Agricultural
Research.

Rice is the staple food for a large proportion of the world’s
population [13] and is an important model system for plant
science research [14]. Pressure on rice supplies has increased
significantly over the past decade. The rice panicle is closely
associated with yield, given that it directly regulates the
grain number [15]. Substantial effort has been expended on
quantitative trait locus (QTL) analyses for rice panicle traits
[16,17]. However, few contributions have been made in auto-
mating rice panicle counts. Liu et al. [18] applied hyperspectral
reflectance and principal component analysis to discriminate
fungal infection levels in rice panicles. Liu et al. [19] used
hyperspectral reflectance data to discriminate the health
conditions of rice panicles. Ikeda et al. [15] developed image
analysis software to extract panicle traits, including values of the
length and number of the various branches and grain numbers.
However, in all of these studies, the rice panicles were cut from
the rice plants, preventing the achievement of dynamic screen-
ing of rice panicles. To our knowledge, no publication has
reported a noninvasive, in vivo determination of rice panicle
numbers.

The panicle number is a key indicator of rice yield, and
counting panicles at an early stage would provide useful
information for estimating rice yield. Panicle identification is
the first step in panicle assessments such as by panicle
counting, panicle length calculation, maturity degree assess-
ment, and biomass prediction. However, because the color of
the panicle at early stages (for example, the heading stage) is
similar to the rest of the plant (green), identifying green
panicles is highly challenging. This paper presents a novel

method for nonintrusive detection of panicle numbers of rice
plants during the full heading stage by analyzing color images
of rice plants taken from multiple angles. The specific goals
were to: (1) differentiate rice panicles from other organs and
(2) calculate rice panicle numbers.

2. Materials and methods
2.1. Automatic image acquisition platform

Because the panicles and leaves of rice plants usually overlap,
visible light imaging from a single angle cannot detect all of the
panicles. For this reason, multi-angle imaging was adopted in this
study. Previously, our group developed a high-throughput rice
phenotyping facility (HRPF) to measure 15 rice phenotypic traits,
excluding panicle number [10]. The HRPF used an industrial
conveyor to transfer pot-grown rice plants to an imaging area for
image acquisition. A turntable was used to rotate the rice plants.
A barcode scanner read the barcode of each pot for indexing.
Plants were illuminated by fluorescent tubes from both the side
and top. Images were taken at 30° intervals by a charge-coupled
device (CCD) camera (Stingray F-504C, Applied Vision Technolo-
gles, Germany) as the turntable rotated. For each rice plant, 12
images (2452 x 2056 pixels) were taken from different angles.
Lighting conditions were constant throughout the process. Image
acquisition was performed by NI-IMAQ Virtual Instruments (VI)
Library for LabVIEW (National Instruments Corporation, USA).
More details about the HRPF system can be found in Yang et al.
2014 [10].

2.2. Automatic image analysis pipeline

An image analysis pipeline was developed to analyze images
from each angle. One image at a time was analyzed. The
image analysis software was complemented with NI Vision for
LabVIEW 8.6 (National Instruments). The image analysis pipeline
consisted of extracting i2 planes from the original color image,
segmenting the image, discriminating the panicles from the rest
of the plant using an artificial neural network (ANN), and then
calculating panicle numbers in the current image (Fig. 1).

In the first step, the original images were preprocessed using
an IMAQ (Image Acquisition System, National Instruments)
low-pass filter to remove noise. After image filtering, the RGB
image was converted into the i1i2i3 color space, a commonly
used color space based on the Karhunen-Loeve transformation
[20]. Philipp and Rath [21] compared discriminant analysis,
canonical transformation, 11i2i3, HSI, HSV, and Lab color spaces
to separate plants and background, and concluded that i1i2i3
represented the best method. The relationship between the
i1i2i3 and RGB color spaces is shown in Eq. (1).

i1 0.333 0333 0333] [R
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After the tests on all of the images acquired from the rice
samples used in this study, we found that the i2 plane
was effective in segmenting panicles from the rest of the
plant. We selected the hysteresis thresholding method [22] for
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Fig. 1 - Image analysis pipeline for analysis of images from a single angle. (a) An RGB image of a rice plant. (b) The i2 component of
(a). (c) A labeled image with candidate panicles. (d) The labeled image with detected panicles.
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segmenting the panicles because it removed the noise without
breaking the contours. The lower threshold was obtained using
the OTSU algorithm [23], and the upper threshold was set as
twice the lower threshold. The OTSU algorithm assumes that
the image follows a bimodal (foreground and background
pixels) histogram. It determines the optimum threshold by
discriminating the foreground and background so that their
intra-class variance is minimal. Because the panicles are
normally positioned at the top of the plant, a “remove boundary
particles” operation was executed to remove the regions at the
bottom of the image. Specifically, the bounding rectangular
bottom of each particle (a bounding rectangle is defined as the
smallest rectangle whose sides is parallel to the x-axis and
y-axis that completely encloses the particle. And bounding
rectangular bottom is the Y-coordinate of the lowest particle
point.) was calculated by the LabVIEW IMAQ function particle
analysis. Then the distance from the bounding rectangular
bottom to the top surface of the pot was computed. If this
distance was less than 200 pixels, the corresponding particle
was removed.

Pixels belonging to the same panicle may appear in a slightly
different color (Fig. 2-a). Consequently, some panicles in the
segmented image may include only parts of panicles (Fig. 2-b).

Hysteresis
thresholding

Region merging

-+

Local region growing was applied to iteratively add neighboring
pixels that met the criterion of color homogeneity (Fig. 2-c).
Because the RGB color space is sensitive to illumination, we
transformed the RGB color space into the normalized rgb space
using Eq. (2). Local region growing was initiated with each
original candidate panicle region and iteratively grown until it
exceeded the predefined local window (11 x 11 in this study). A
neighboring pixel was added to the region if Eq. (3) was satisfied.
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where (r, g, b) was the value of the 1, g, b component of a given
neighboring pixel, (7, g, b) was the average of ther, g, b
component in a given candidate panicle region, and T was the
threshold (0.1 in this study). The grayscale range of the R, G, B
component was [0, 255] and the grayscale range of ther, g, b
component was [0, 1].

After the region-growing process, some panicles might
appear oversegmented into several regions. This situation was

Region growing
& labeling

Fig. 2 - Examples of local region-growing and region merging. (a) An original RGB image of a rice plant. (b) The binary image
after hysteresis thresholding. (c) The result of local region growing. After region growing, the objects in the boxes were
extracted more precisely. (d) The result of region merging. The two regions in the orange box were merged into one region after
region merging. For better visualization, the images in (b) and (c) are labeled.
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usually caused by inhomogeneity of color among the pixels of a
panicle, owing to overlap by other organs, inhomogeneity of
maturity condition among spikelets, and nonuniform lighting
conditions. To correct this situation, a region-merging step was
performed to join adjacent regions (Fig. 2-d). Region merging
was an iterative process that started from two adjacent regions
having the smallest sum of areas. In each iteration, the
following tasks were performed: (1) the normalized area of
each region (the region area divided by the average area of all of
the regions in the image) was recalculated, (2) the sum of the
normalized area (SNA) of every two adjacent regions was
calculated, and (3) the two adjacent regions that had the
smallest SNA value were determined. If the smallest SNA
value was smaller than a predefined threshold (3 in this study),
the two regions were merged. The iteration process stopped
when the smallest SNA value was greater than the threshold.
After region merging, small particles with areas lower than
a predefined area threshold were removed. Owing to natural
variation in heading time, panicle area varies greatly among
different panicles both within the same panicles and among
different plants. We accordingly selected an adaptive area
threshold based on the average of region areas in the current
image, instead of a fixed area threshold. After preliminary
tests, the threshold was defined as 0.2 multiplied by the
average of the region areas in the current image. Organs other
than the panicles might remain in the segmented image
(Fig. 1-c). In the next step, automatic feature extraction
for each candidate panicle region in the segmented image
was performed. These features were then transferred to a
back-propagation ANN to identify the panicle regions.

2.3. Feature extraction and feature subset selection

This work used several color spaces (RGB, HSL, HSV, normal-
ized rgb, and i1i2i3) to describe color features of the extracted
candidate panicle regions. For each region, the original
extracted color features represented the average and standard
deviation of the R, G, B, H, S, L, V, 1, g, b, and i2 components in
the region. Some regions that were not panicles had colors
similar to those of panicles; accordingly, five morphological
features and one location-related feature were calculated to
distinguish more precisely the panicles from other organs.
The measurements of morphological features included area,
information fractal dimension (IFD), elongation factor, orien-
tation, ratio of width, and Waddell disk diameter (diameter of
a disk with the same area as the particle). The center of mass
(v) was extracted as the location-related feature.

To select the effective features, we performed feature
subset selection using a stepwise selection method (SAS
stepdisc procedure; method = stepwise, SLE = 0.15, SLE spec-
ifies the significance level for adding variables, SLS = 0.15, SLS
specifies the significance level for retaining variables). This
process extracted 12 effective features from the original 28
features of the candidate panicles. The 12 features extracted
were: (1) the standard deviation of the R component (Rs 4) was
computed as the standard deviation of the R component of all
the pixels in the region, (2) the average of the H component
(Hq), computed as the average of the H components of all the
pixels in the region, (3) the standard deviation of the S
component (Ssg), (4) the average of the r component (rg),

(5) the standard deviation of the g component (gsq4), (6) the
average of the b component (b,), (7) the standard deviation of
the b component (bs4), (8) the standard deviation of the L
component (Lsq), (9) the standard deviation of the i2 compo-
nent (i25 4), (10) the elongation factor (EF). A rectangle with the
same perimeter and area as a given region was called
the equivalent rectangle. The elongation factor was calculated
as the max ferret diameter (F) divided by the equivalent
rectangle short side (RFp). And max Feret diameter was the
distance between the two perimeter points that are the
furthest apart. The elongation factor indicated the extent of
the elongation of the region. More details concerning the
definition of EF can be found in the NI Vision Concepts
Manual (National Instruments), (11) the area (A) was comput-
ed as the number of pixels in the region, and (12) the IFD. The
fractal dimension is widely used as a description of shape
complexity [24]. The most commonly used method for
calculating the fractal dimension is the box-counting method
because it is simple to compute. In this study, we adopted IFD
because it provides a more precise estimate of the fractal
dimension than the box-counting method and is still easy to
compute [25]. The IFD is calculated by plotting information I,
(defined in Eq. (4)) against the natural logarithm of the box
size ¢; IFD is computed as the slope of the regression line.

Ne 1
L= piln o)
i=1 1

where N, is the number of boxes, ¢ is the box size, and p; is the
probability of the foreground pixels falling into the ith box.

2.4. Panicle region identification with ANN

ANN is widely used for pattern recognition tasks. In this
study, a three-layered back-propagation ANN with 12 input
neurons, h hidden neurons, and 2 output neurons was used to
discriminate panicle regions from other organs.

As a pre-processing step, a total of 907 samples with 650
panicle regions and 247 regions of other organs were collected
to construct the neural network. The 907 samples were split
randomly into three subsets: a training set (428 samples with
315 panicle regions and 113 regions of other organs), a validation
set (95 samples with 65 panicle regions and 26 regions of other
organs), and a test set (384 samples with 276 panicle regions and
108 regions of other organs). The training set was used to update
the network parameters. The validation set was used to prevent
the network from overfitting the data. The error in the validation
set was monitored during training. Generally, the validation
error decreased at the beginning of the training but increased
when the network began to overfit. The network parameters
were determined at the minimum of the validation error.
The test set was used to evaluate the performance of the
network. After monitoring the performance of the samples
with h varying from 5 to 25, h was set as 13 based on the best
performance. For each h value, the network was trained
more than 100 times. In the end, the network that generated
the highest accuracy (93.68% for the validation set and
94.27% for the test set, Table 1) was chosen for panicle
identification. This learning phase of panicle identification
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Table 1 - Classification accuracy (%) for panicle regions,

other organ regions, and overall regions using an artificial
neural network.

Panicle Other organ Overall

region region region
Validation set 97.10 84.62 93.68
Test set 96.74 87.96 94.27

was accomplished using the artificial neural network tool-
box in MATLAB R2009a (MathWorks, USA).

After the learning phase, the network was constructed
using LabVIEW. The network was then used to identify
panicle regions from the candidate panicle regions during
the experiments.

2.5. Panicle number determination

After panicle identification with ANN, the panicle number in
the current image was determined as the number of regions
remaining in the image. Some panicles may be hidden by
other organs at one angle. Consequently, the panicle number
determined from the image at that angle will be smaller than
the actual panicle number. However, there are images at
certain angles in which all of the panicles (or at least the
maximum number of panicles) can be seen. The panicle
number determined from the image at that angle will be the
best estimation of the actual panicle number. Accordingly, the
panicle number of the plant was defined as the maximum of
the panicle numbers extracted from all 12 multi-angle images.

To test the performance of the method developed in this
study, 105 greenhouse rice plants belonging to a popular rice
variety (Zhonghua 11) at the full heading stage were imaged
and analyzed. The mean absolute error (MAE) was calculated
using Eq. (5).

1
MAE = n Z?ZO‘PNi.auromatic_PNi.manual| (3)

where PNjautomatic r€presents the panicle number counted
automatically using the method described, PN;manual repre-
sents the panicle number determined manually, and n
represents the number of rice plant samples.

3. Results and discussion
3.1. Panicle identification

Identifying panicles from the extracted candidate panicle
regions is problematic, owing to natural variation in panicle
shape, size, and color both within the same plant and among
different plants (Fig. 3-a, c, e, f). Fig. 4 shows examples of
panicle identification using the ANN. The green regions
indicate regions that were identified as panicles, and the red
regions indicate other organs. Although ANN performed well
in most cases (Fig. 3-a, b, ¢, d), the performance of ANN
decreased in the following situations: (1) only part of the other
organ was extracted, and some of these extracted regions
were similar in appearance to a panicle and consequently
misclassified as panicles (Fig. 3-e, f); and (2) some partly

exserted panicles appeared very similar to other organs and
thus were mistakenly treated as other organs (Fig. 3-g, h). To
improve the accuracy of panicle identification, more imaging
technologies may be incorporated in the future.

For comparison, we also investigated discriminant analy-
sis using the feature set selected in ANN to classify panicles
and other organs. Table 2 illustrates the comparison of the
classification accuracy using ANN, linear discriminant analy-
sis (LDA), and quadratic discriminant analysis (QDA). Note
that the test set was generated by combining the validation
set and test set used for the construction of ANN; additionally,
the same training set was used as described for the construc-
tion of the ANN.

As shown in Table 2, in general, ANN outperformed LDA
and QDA in discriminating panicles. However, LDA and QDA
performed better than ANN in identifying other organs. In
view of the overall classification accuracy, ANN was the
optimal classifier and was used in this study.

3.2. Panicle number determination

The MAE of the manual and automatic count was 0.5. Fig. 4-a
presents a scatter plot of the automatic count against the manual
count. Fig. 4-b illustrates the distribution of the difference
between the two counts (defined as PN;automatic — PNimanual)-
Among the 105 tested rice plants, 2.8%, 21.0%, 54.3%, 20.0%, and
1.9% of the plants generated differences of -2, -1, 0, 1, and 2,
respectively, between the automated and manual counts. The
variance of the difference was 0.6.

The discrepancy between the manual and automatic count
was caused chiefly by errors in image segmentation and
panicle identification. Inaccurate image segmentation may
lead to incorrect discrimination of the panicle from other
organs and consequently introduce bias into the panicle
number determination. Additionally, oversegmentation (seg-
mentation of one panicle region into two or more regions)
caused overestimation of panicle numbers, whereas failure in
segmenting the panicle region from the rest of the plant may
cause underestimation of the panicle number. Identification
of panicles as other organs may result in underestimation of
panicle number and identification of other organs as panicles
may result in overestimation of panicle number.

Segmenting panicles from the rest of the plant during the
full heading stage was problematic, owing to color similarity
between panicles and other organs. Panicle exsertion differs
not only between plants but also within tillers of the same
plant. Moreover, the growth conditions of individual spikelets
vary with the positions of the spikelets within the same
panicle [26]. For these two reasons, color varies among
different panicles within the same plant and even within
different pixels belonging to the same panicle. In some cases,
the panicles were overlapped by other organs. Color variation
and organ overlap may result in false segmentation. In
addition to i2 plane segmentation, we investigated segmen-
tation based on other transformations of the RGB color space
(including HSI, HSL and discriminant analysis [21]) and the
gray-level co-occurrence matrix (GLCM) [27]. Discriminant
analysis and GLCM segmentation generated results simi-
lar to those of i2 plane segmentation. However, discrim-
inant analysis is a supervised method and thus has the
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7—other organ

f-d— panicle

/ ~-#— overlap | | -a— misclassify

Fig. 3 - Examples of panicle identification with ANN. (a), (c), (e), and (g) show the original RGB images of a rice plant. (b), (d), (f),
and (h) illustrate the result of organ classification, in which green regions and red regions represent panicles and other organs,
respectively. (a)/(b) and (c)/(d) show instances in which the panicles are correctly classified. (e)/(f) displays an instance in which

a region of other organs is misclassified as a panicle region, whereas (g)/(h) illustrates an instance in which a panicle region is
misidentified as a region of other organs.
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Fig. 4 - Comparison of automatic image-based measurements with manual measurements. (a) Scatter plot of panicle numbers
evaluated automatically against manual measurements. Regression line: y = 0.8511x + 0.5175, coefficient of determination
(R?) = 0.8644. (b) Distribution of the differences between the two measurements.

disadvantage of poor generalization relative to i2 plane
segmentation. The time required for computing GLCM
was large, especially for large images. In view of these
limitations, we selected i2 component segmentation for
segmenting panicles.

In contrast to previous studies where rice panicles were cut
from the rice plants and then imaged for further analysis, in
this study we coupled image processing and pattern recogni-
tion, thereby developing a new image analysis pipeline for
precise discrimination of panicles from the rest of the plant
in vivo. The candidate panicle regions were extracted by
integration of hysteresis thresholding based on the i2 com-
ponent, region growing, and region merging. An ANN com-
bining color, morphological, and location-related features was
then adopted to identify panicle regions. Based on panicle
region identification, the panicle number was determined in
vivo in a non-intrusive manner.

Generally, the presented method based on image analysis
produced satisfactory results for rice varieties whose visual
overlap between leaves and panicles was not large. For rice
varieties having more than 20 panicles inserted deeply into
the canopy, counting panicles from multi-angle RGB images
of the plant is not practicable even for humans. In this
case, none of the images obtained from different angles can
display all of the panicles without overlap. Thus, the panicle

Table 2 - Comparison of classification accuracy for panicle
regions, other organ regions, and overall regions of the

test set using an artificial neural network (ANN), linear
discriminant analysis (LDA), and quadratic discriminant
analysis (QDA).

Classifier Panicle Other organ Overall
region (%) region (%) region (%)
ANN 96.80 87.30 94.20
LDA 90.10 93.30 91.00
QDA 90.40 91.80 90.80

number measured by our method (maximum panicle number
among the 12 images) was always smaller than the actual
value. Thus, for these varieties our method was useless. X-ray
computed tomography (CT) technology is capable of detecting
objects that are obscured, and thus may have potential for
counting panicles for these varieties. However, its computa-
tion cost is relatively large. Compared with counting panicles,
predicting panicle biomass or yield of the plant from RGB
images taken from multiple angles may be more meaningful
and feasible for these rice varieties.

4. Conclusion

This paper described the use of multi-angle imaging and
image analysis to facilitate rice panicle counting. Using
specific image analysis software, the method described was
able to determine the panicle number of pot-grown rice plants
in vivo in a nonintrusive manner. We succeeded in largely
overcoming the hurdle of spectral similarity between pani-
cles, leaves, and stems by exploiting shape and textural
differences among organs. A total of 105 rice plants during
the full heading stage were examined to test the performance
of the method. The mean absolute error of the manual and
automatic counts was 0.5, with 95.3% of the plants yielding
absolute errors within +1. Future work will include monitor-
ing the growth conditions of panicles, including panicle
length, area, and degree of maturity. The photonics-based
technology described here will be useful for predicting rice
yield and screening candidate rice plants.
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