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Abstract 

Background: Rice panicle phenotyping is important in rice breeding, and rice panicle segmentation is the first and 
key step for image-based panicle phenotyping. Because of the challenge of illumination differentials, panicle shape 
deformations, rice accession variations, different reproductive stages and the field’s complex background, rice panicle 
segmentation in the field is a very large challenge.

Results: In this paper, we propose a rice panicle segmentation algorithm called Panicle-SEG, which is based on sim-
ple linear iterative clustering superpixel regions generation, convolutional neural network classification and entropy 
rate superpixel optimization. To build the Panicle-SEG-CNN model and test the segmentation effects, 684 training 
images and 48 testing images were randomly selected, respectively. Six indicators, including Qseg, Sr, SSIM, Precision, 
Recall and F-measure, are employed to evaluate the segmentation effects, and the average segmentation results for 
the 48 testing samples are 0.626, 0.730, 0.891, 0.821, 0.730, and 76.73%, respectively. Compared with other segmenta-
tion approaches, including HSeg, i2 hysteresis thresholding and jointSeg, the proposed Panicle-SEG algorithm has 
better performance on segmentation accuracy. Meanwhile, the executing speed is also improved when combined 
with multithreading and CUDA parallel acceleration. Moreover, Panicle-SEG was demonstrated to be a robust seg-
mentation algorithm, which can be expanded for different rice accessions, different field environments, different 
camera angles, different reproductive stages, and indoor rice images. The testing dataset and segmentation software 
are available online.

Conclusions: In conclusion, the results demonstrate that Panicle-SEG is a robust method for panicle segmentation, 
and it creates a new opportunity for nondestructive yield estimation.
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Introduction
Rice (O. sativa) is an important primary food for a large 
proportion of the world’s population, especially in Asia 
[1–3]. Therefore, rapid screening for crops with high yield 
is extremely important for ensuring the safety of rice pro-
duction and helping to address food shortage problems 
[4, 5]. The rice panicle, as an important agronomic com-
ponent [6], not only is closely associated with yield [7, 
8] but also plays an important role in disease detection 
[9], nutrition examination [10] and growth period deter-
mination [11]. Thus, accurate panicle segmentation is a 
key step in rice field phenotyping [12]. However, because 
of the complexity of the field environment (water reflec-
tions, illumination unbalance and cluttered background) 
(Fig.  1A–C), variations in the rice accessions (Fig.  1D), 
different weather conditions (Fig. 1E) and different repro-
ductive stages (Fig.  1F), which cause differences in the 
colors, textures, size, and shapes in the panicle images, 
accurate panicle segmentation is an enormous challenge 
[13]. The existing segmentation methods mostly focus on 
two aspects. One aspect is solely based on color informa-
tion. For example, Tang et al. proposed a method (HSeg) 
that relies on Hue plane threshold segmentation for the 
maize tassel [14]. Part of a corn tassel was extracted to 
locate the maize tassel. The disadvantage is that the same 
component under different illuminations will appear to 
have various colors. Thus, segmentation based on color 
information will be seriously affected by the illumina-
tion. Additionally, the color information changes with the 
reproductive stage. In this way, the type of method usu-
ally applies to a certain reproductive period. Except for 
the disadvantages described above, an excess dependence 

on color information will lead to the phenomenon of 
incomplete extraction. The other aspect is the two-step 
segmentation method. Among these, candidate region 
generation is the first step, and a general classifier is then 
adopted for the classification of candidate regions.

To generate candidate regions, several methods have 
been applied in the current research studies: (1) one of 
the ideas relies on threshold segmentation for different 
color channels. Similarly, Duan et  al. applied an algo-
rithm to extract potted rice panicles from multi-angle 
side-view images [12]. The hysteresis thresholding based 
on the i2 color plane is applied to extract the panicle can-
didate regions. Obviously, image segmentation of pani-
cles in pot-grown rice, which is inspected in a chamber 
with a stable illumination environment, is relatively sim-
ple compared with phenotyping in field environments. 
(2) Another thought for candidate regions generation is 
utilizing a classifier, such as the support vector machine 
(SVM). The gray values for different color spaces, such 
as the RGB, HSV and LAB color planes, are calculated as 
the input vector of the SVM classifier. For example, Zhu 
et  al. introduced a wheat ear detection mechanism to 
automatically observe the wheat heading stage [15]. The 
proposed method is applied to generate wheat ear can-
didate regions with SVM. In addition, Lu et al. developed 
a framework called mTASSEL-S to execute the maize 
tassel segmentation [2]. The color space conversion is 
used to make a coarse location easier with SVM. (3) Fur-
thermore, there is the consideration that the candidate 
regions could rely on graph-based segmentation. Simi-
larly, Lu et al. in 2016 proposed a method for maize tassel 
segmentation based on region-based color modeling [13]. 

Fig. 1 Challenges in the field based rice panicle segmentation. A Water reflection. B The illumination unbalance in the same plot. C Yellowish rice 
leaves and serious overlapping. D Variance in rice accession. E Different weather conditions. F Different reproductive stages
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The fusion of graph-based segmentation and superpixel 
generation achieves the division of candidate regions.

Afterward, the second step of the two-step segmen-
tation method uses a general classifier that is based on 
SIFT features or other features (such as color features, 
morphological features and location features used by 
Duan et  al. [12]) to classify the candidate regions. Guo 
et  al. proposed a powerful method for automatically 
detecting flowering panicles of paddy rice in RGB images 
taken under natural field conditions [16]. Visual words, as 
a coding method, is developed to encode the SIFT fea-
tures for each of the candidate regions. Then, the SVM 
classifier is used as a fine-detection method for the can-
didate regions. The concept adopted by Zhu et  al. [15] 
is similar to the above approach. The difference is that 
another encoding algorithm (fisher vector encoding) is 
chosen instead of visual words. Overall, compared with 
segmentation that is based on only color information, the 
two-step segmentation is relatively robust.

To the best of our knowledge, few studies have inves-
tigated rice panicle segmentation. In this study, simple 
linear iterative clustering (SLIC) [17] is used to gener-
ate candidate regions, and convolutional neural network 
(CNN, one of the deep learning technologies) [18] is 
applied as a candidate region classifier. Afterward, the 
entropy rate superpixel (ERS) [19] algorithm is devel-
oped for segmentation result optimization. The results 
showed that our presented method can be expanded for 
the different field environments, different camera angles, 
different reproductive stages, and indoor rice images. 
Compared with several related segmentation algorithms, 
the proposed Panicle-SEG algorithm shows better per-
formance regarding the segmentation accuracy.

Results
Image analysis pipeline of the Panicle‑SEG algorithm
After the image acquisition, the main flow diagram of 
our rice panicle segmentation algorithm (Panicle-SEG 

Fig. 2 The flow diagram of the Panicle-SEG algorithm. A Original field rice image. B Mask image. C SLIC superpixel segmentation result. D Auto-
matic labeling. E Training set and validation set building: The patches were augmented and divided into the training set and validation set. F CNN 
network. G Panicle-SEG-CNN model generation. H Testing sample. I Testing patches generation. J The pre-trained Panicle-SEG-CNN model gener-
ated in off-line training is utilized in testing patches classification, and the testing patches were categorized into candidate panicle and confirmed 
background. K The candidate panicle patches were merged into one image, called the coarse segmentation results. L Entropy rate superpixel 
image. M Optimized segmentation result. N The final segmentation result was obtained after removing small regions
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algorithm) including off-line training and on-line seg-
mentation is shown in Fig.  2. Here, 684 representative 
rice images, including 49 top-view field rice images, 30 
overhead-view field rice images, 302 pot-grown side-view 
images and 303 pot-grown top-view images are selected 
to build the Panicle-SEG-CNN model, in which the illu-
mination changes, weather conditions, panicle shapes, 
rice accessions, cluster background, reproductive stages 
and camera angle condition are all considered (Fig.  1). 
The detailed process of the proposed Panicle-SEG algo-
rithm is described here as an example of the field top-
view rice image (Fig. 2A). The off-line training contained 
4 steps: (1) Generation of patches: all the images were 
manually segmented using Photoshop software to obtain 
the mask images (Fig.  2B) for the following automatic 
labeling. Patches were generated using SLIC super-
pixel segmentation (Fig. 2C); (2) Automatic labeling: the 
patches were automatically labeled into 2 categories: can-
didate panicle and confirmed background (Fig.  2D); (3) 
Training set and validation set building: The patches were 
augmented and divided into the training set (901,895 
patches) and validation set (225,472 patches) (Fig.  2E); 
(4) CNN training and Panicle-SEG-CNN model genera-
tion (Fig. 2F, G). Then, for a testing sample (Fig. 2H), the 
on-line segmentation included 3 steps: (1) Generation of 
patches: The testing patches were generated using SLIC 
superpixel segmentation (Fig.  2I); (2) Coarse segmenta-
tion by using a pre-trained Panicle-SEG-CNN model: The 
pre-trained Panicle-SEG-CNN model generated in off-
line training is utilized in testing patch classification, and 
the testing patches were categorized into candidate pani-
cles and confirmed background (Fig. 2J). Then the candi-
date panicle patches were merged into one image, called 
the coarse segmentation result (Fig. 2K); (3) Entropy rate 
superpixel optimization: The coarse segmentation result 
was combined with the entropy rate superpixel image 
(Fig.  2L) to obtain the optimized segmentation result 
(Fig.  2M). The final segmentation result (Fig.  2N) was 
obtained after removing small background region.

The processing efficiency of the Panicle‑SEG algorithm
Using our computer system (Microsoft Windows 10 PC 
with a 4-core i5 CPU, 3.2  GHz per CPU core, 8  GB of 
memory and a NVIDA GTX 750ti video card), the seg-
mentation process for one testing image with resolution 
of 1815  ×  1971  pixels takes approximately 135–150  s. 
Utilizing multithreading (OpenMP) and CUDA parallel 
acceleration, the processing efficiency could be increased 
to approximately 70  s. Moreover, the Panicle-SEG algo-
rithm was not restricted by the size of the input image, 
which means that it can address any size for the original 
input rice image, such as 800 ×  600  pixels, etc. At the 

same time, with a decreased size of the input image to be 
processed, the time required will obviously be reduced. 
For example, when the resolution of the input image is 
1392 ×  1040  pixels, the segmentation time in the GPU 
mode is about 20–22 s. Furthermore, the CPU frequency, 
CPU cores and performance of the video card, to a large 
extent, will impact the time for segmentation. We pack 
the panicle segmentation project (Panicle-SEG) with an 
installer. The whole testing images and the Panicle-SEG 
installation file in CPU/GPU mode are available online 
at: http://plantphenomics.hzau.edu.cn/checkiflogin_
en.action (username: UserPP; password: 20170108pp), 
and the detailed software implementation procedure is 
illustrated in Additional file  1: Video S1 and Additional 
file  2: Appendix S1. The detailed software implementa-
tion is as follows: (1) Install the “setup_Panicle-SEG_cpu.
exe” or “setup_Panicle-SEG_gpu.exe” file. (2) Open the 
command line and enter to the current file path. (3) Open 
the “Readme.txt” and revise the parameters if needed. 
(4) Copy the revised content in “Readme.txt” and paste 
to the command line. (5) Waiting for the rice panicle 
segmentation (the cost time depends on your computer 
performance). (6) The segmentation results are shown in 
“segmentation_results” file.

Performance evaluation of the testing set using six 
indicators
In this study, after 684 representative rice images were 
used to train the Panicle-SEG-CNN model, another 
48 testing images, including 24 field-based top-view 
images, 12 field-based overhead-view images (heading 
stage, filling stage and mature stage), 12 indoor images (7 
side-view and 5 top-view) were selected to test the seg-
mentation algorithm. To evaluate the performance of the 
segmentation, six indicators, including the Qseg, Sr [20], 
Structural Similarity Index (SSIM) [21], Precision, Recall, 
and the F-measure [22] are adopted. Among them, the 
range of Qseg is from 0 to 1. Namely, the higher the value 
(approach to 1), the more accurate the segmentation is. 
Conversely, the closer the value is to 0, the worse the con-
sistency is. So, the value of Qseg reflects the consistency 
of all the image pixels, including panicle foreground part 
and background part. And the value of Sr represents the 
consistency of only panicle part. From the perspective of 
an image, it reflects the completeness of the segmenta-
tion results. The computational formula for Qseg and Sr 
are provided in Eqs. 1, 2. The SSIM is applied to describe 
the degree of similarity between the segmentation images 
and the ground truth images. The SSIM model ana-
lyzes the structure of the image information from three 
aspects, including the brightness, structure similarity 
and contrast. The range of the SSIM is from 0 to 1, and 

http://plantphenomics.hzau.edu.cn/checkiflogin_en.action
http://plantphenomics.hzau.edu.cn/checkiflogin_en.action
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the higher the value is, the more similar the two images 
are. Precision and Recall are the most basic indicators 
to reveal the final segmentation results. Precision illus-
trates the accuracy of the segmentation algorithm, and 
Recall represents the completeness of the segmented rice 
panicles. The computational formulas for Precision and 
Recall are provided in Eqs. 3, 4. In practice, Precision and 
Recall interact with each other. When Precision is high, 
Recall will be low. Sometimes, we need to balance these 
two indicators. To accomplish this goal, the F-measure is 
proposed. The computational formula is shown in Eq. 5. 
The higher the value of the F-measure is, the more per-
fect the rice panicle segmentation will be.

(1)Qseg =

n∑

i=0

m∑

j=0

(A(v)i,j ∩ B(v)i,j)

n∑

i=0

m∑

j=0

(A(v)i,j ∪ B(v)i,j)

(2)Sr =

n∑

i=0

m∑

j=0

(A(v)i,j ∩ B(v)i,j)

n∑

i=0

m∑

j=0

B(v)i,j

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN

(5)F =
2× Precision× Recall

Precision+ Recall
× 100 (% )

where, A in Eqs. 1, 2 means the panicle pixels (v = 255) 
or background pixels (v = 0) segmented by our Panicle-
SEG, and B in Eqs. 1, 2 represents a reference set of man-
ually segmented panicle pixels (v = 255) or background 
pixels (v =  0). The value of m and n reflects the image 
row and column and i, j are the pixel coordinate of the 
images. In Eqs.  3–5, the TP, TN, FP, and FN represent 
the numbers of true positives, true negatives, false posi-
tives, and false negatives, respectively. True positives 
(TP) are when the predicted results and the correspond-
ing ground truth are both rice panicle pixels. True nega-
tives (TN) represent that the predicted results and the 
corresponding ground truth are both background pixels. 
False positives (FP) were determined as those pixels that 
were classified as rice panicle pixels, but the ground truth 
of those pixels are background. The False negatives (FN) 
are those pixels that belong to the ground truth, but they 
are not correctly discriminated.

For the Panicle-SEG segmentation algorithm, the mean 
values of the Qseg, Sr, SSIM, Precision, Recall and the 
F-measure (%) were 0.626, 0.730, 0.891, 0.821, 0.730, and 
76.73%, respectively. The standard deviations of the Qseg, 
Sr, SSIM, Precision, Recall, and the F-measure (%) for 48 
testing samples were 0.072, 0.090, 0.088, 0.074, 0.090, and 
5.46% respectively. The performance and the final rice 
panicle segmented results for 48 testing images are listed 
in Additional file 3: Table S1.

Comparison of Panicle‑SEG segmentation results with the 
other three approaches
To verify the superiority of the Panicle-SEG algorithm, 
the other three well-established algorithms, including 
HSeg [14], i2 hysteresis thresholding [12], and jointSeg 

Fig. 3 The means and standard deviations of six evaluation indicators for the testing set. Six indicators, including the Qseg, Sr, SSIM, Precision, 
Recall, and the F-measure (%) are adopted to evaluate the performance of the segmentation result. The color columns and black lines represent the 
means and standard deviations for the testing set, respectively. Additionally, the color differences of the columns show the various segmentation 
algorithms (Panicle-SEG, HSeg, i2 hysteresis thresholding, and jointSeg)
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[13], were used. The means and standard deviations of 
the six evaluation indicators for the 48 testing images 
were estimated (Fig. 3). In Fig. 3, the color columns and 
black lines represent the means and standard deviations, 
respectively. Additionally, the color difference in the col-
umns shows the various segmentation algorithms. Except 
for the Panicle-SEG algorithm, the other three contrast 
algorithm’s standard deviations are relatively large, which 
reflects their weak adaptability to different field test-
ing images. In addition, for the Panicle-SEG algorithm, 
the average of Qseg is about 0.626, which is significantly 
higher than other three contrast algorithms. So, the pro-
posed algorithm has better consistency of both panicle 
foreground part and background part. And the mean 
value of SSIM for the Panicle-SEG algorithm is higher 
than that of the other three contrast algorithms. Moreo-
ver, the F-measure is a comprehensive indicator, and it 

accounts for Precision and Recall; it can achieve 0.767 
using our Panicle-SEG algorithm compared with 0.398, 
0.441, and 0.209 for HSeg, i2 hysteresis thresholding, 
and jointSeg, respectively. This phenomenon shows that 
the Panicle-SEG algorithm could accurately segment rice 
panicles and guarantee the integrity of panicle segmen-
tation. The comparison results of the testing set for the 
HSeg, i2 hysteresis thresholding, and jointSeg algorithms 
are shown in Additional file 4: Table S2.

Four representative testing images were selected to 
compare the segmented results obtained from differ-
ent approaches (Fig. 4). In the third column of Fig. 4, the 
HSeg segmentation results are established. Large back-
ground pixels existed, and the average of SSIM is only 
approximately 0.5. In addition, i2 hysteresis thresholding 
is a novel idea that was originally proposed for indoor 
potted side-view rice images segmentation. The color 

Fig. 4 Comparison to state-of-the-art segmentation approaches. Four representative field rice images are selected to illustrate the segmentation 
effect. The first column reflects the original top-view rice images in the field. The second column is the manual panicle segmentation result using 
Photoshop software. The third column to the sixth column represents the rice panicle segmentation results using HSeg, i2 hysteresis thresholding, 
jointSeg, and Panicle-SEG algorithm. A The upright panicles are partially hidden in the rice leaf blade. B The bend growth panicles are basically 
exposed above the rice leaf blade. C The awn exists in the rice panicle, and the illumination is uneven in the same field plot rice image. D On a 
cloudy day, the panicle color appears to be gray
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information in the i2 plane and artificial neural network 
(ANN) modeling were considered for panicle segmenta-
tion. The fourth column in Fig. 4 shows the segmentation 
results. Additionally, jointSeg was originally proposed for 
maize tassel segmentation in the field. Thus, we retrain 
the model using 684 training images with default param-
eters for a fair comparison, and the fifth column in Fig. 4 
shows the result. Compared with the HSeg and jointSeg 
algorithms, the algorithm based on i2 hysteresis thresh-
olding is good at edge-preserving, which means that the 
edge of rice panicle can be well separated and kept. And 
the dividing lines fit the edge of the rice panicle well. 
Moreover, the background using i2 hysteresis threshold-
ing is obviously cleaner. However, because of the depend-
ence on the panicle color, it can hardly resolve white rice 
panicles caused by cloudy weather. The last column in 
Fig. 4 is our Panicle-SEG segmentation result. In such a 
complex field environment, the method we proposed still 
has a stronger ability for panicle segmentation accuracy. 
The edges and the structural integrity of the rice panicles 
maintain are well maintained. Above all, in our previ-
ous work, the i2 method [12], which relies on the color 
and position information, is proposed to extract panicle 
region. While, the proposed Panicle-SEG algorithm is 
independent of the color and position information (pani-
cles usually locate at the upper part of the rice plant), 
which gives it stronger robustness.

Discussion
Segmentation results under different rice accessions or 
illumination environments
Because of the differences in the rice accessions, the 
panicles’ textures and shapes could be quite different. In 
Fig.  4A, the upright panicles are partially hidden in the 
rice leaf blades. For Fig. 4B, the bend growth panicles are 
basically exposed above the rice leaf blades. At the same 
time, the panicle awn exists in Fig. 4C. The last column 
shows the rice panicle segmentation result using the Pan-
icle-SEG algorithm. In each of these three scenarios, com-
pared with the other three segmentation algorithms, the 
Panicle-SEG algorithm has a stronger ability to perform 
rice panicle segmentation, and panicle integrity is well 
maintained. Thus, the proposed Panicle-SEG algorithm 
is well suited to panicle segmentation with varying rice 
accessions (totally, 71 rice accessions are used for train-
ing and testing processing). Moreover, the weather, as an 
important field factor, influences the performance of the 
panicle segmentation result. In Fig. 4C, the illumination 
intensity in the right image part has a significant differ-
ence from that of the left image part, which will cause 
the situation that pixels could appear in different colors. 
The highlighted panicle parts look pale. On the other 
hand, caused by a cloudy day, the panicle color in Fig. 4D 
appears gray. This type of issue can still be addressed by 
the proposed Panicle-SEG algorithm. Additionally, the 

Fig. 5 Two field rice images having different illumination. A High brightness. B Low brightness
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illumination differences (Fig. 5) and illumination uneven-
ness (Additional file 5: Figure S1) are common phenom-
ena in the field environment. Surely, the brightness in 
Fig. 5A is significantly brighter than Fig. 5B. But the value 
of SSIM for the two segmented images can reach more 
than 0.890, which reflects that the segmented images and 
the manual segmentation results have a high degree of 
similarity. And, the average of Qseg of these two bright-
ness conditions is over 0.62. So, the proposed algorithm 
has better consistency of both panicle foreground part 

and background part even in different illumination con-
ditions. Furthermore, the difference in illumination is not 
only in different field plot images, but also in different 
areas of the same image like Additional file 5: Figure S1. 
In this way, the proposed Panicle-SEG algorithm can still 
solve this problem well. So, both highlighted regions and 
gray panicles can be well segmented. This algorithm does 
not rely on the weather, illumination, shape deformation, 
and rice accessions, which illustrates strong robustness 
and stability.

Fig. 6 Panicle segmentation results under overhead-view camera angle with different reproductive stages. A Heading stage. B Filling stage. C 
Mature stage
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Segmentation results under different camera angles 
and different reproductive stages
In the field environment, the overhead-view is also com-
monly used for field rice image acquisition. Figure 6A–C 
show three overhead-view field rice images with differ-
ent reproductive stages (heading stage, filling stage and 
mature stage). The second column in Fig.  6A–C repre-
sents the manual segmentation results using PhotoShop 
software. And the last column reflects the correspond-
ing Panicle-SEG segmentation result. For heading stage 
in Fig. 6A, the Qseg, Sr, SSIM, Precision, Recall, and the 
F-measure (%) can achieve 0.662, 0.758, 0.970, 0.840, 
0.758, and 79.7%, respectively. For filling stage in Fig. 6B, 
the Qseg, Sr, SSIM, Precision, Recall, and the F-meas-
ure (%) are 0.657, 0.876, 0.943, 0.724, 0.876 and 79.3%, 
respectively. And for mature stage in Fig. 6C, the Qseg, Sr, 
SSIM, Precision, Recall, and the F-measure (%) are 0.712, 
0.873, 0.779, 0.795, 0.873 and 83.2%, respectively. In this 
way, the proposed Panicle-SEG segmentation algorithm 
can not only adapt to different camera angles, but also 
has good segmentation result for different growth peri-
ods. This allows us to use this algorithm to perform more 
work such as growth period detection, etc.

Segmentation results under an indoor inspection 
environment
As a highly-robust panicle segmentation algorithm, the 
indoor potted rice images acquired by the RGB camera 
from top-view and side-view are also suitable for panicle 
segmentation using Panicle-SEG. The original indoor rice 
images, manually segmented images, and Panicle-SEG 
segmented results are shown in the left column, center 
column, and right column of Fig. 7, respectively. As illus-
trated in Fig. 7, the F-measure (%) is above 84%, the Qseg 
is above 0.7 and the SSIM values are all above 0.99. Thus, 
the proposed Panicle-SEG algorithm also has strong flex-
ibility for indoor top-view rice images (Fig.  7A), indoor 
side-view rice images with green leaves (Fig.  7B), and 
indoor side-view rice images with yellow leaves (Fig. 7C).

Conclusion
In this study, we establish a robust and open image seg-
mentation software for segmenting rice panicle based on 
deep learning and superpixel optimization. Compared 
with other approaches, the Panicle-SEG algorithm has 
better performance on segmentation accuracy. Moreover, 
the Panicle-SEG can be expanded for different field envi-
ronments, different camera angles, different reproduc-
tive stages, and even indoor rice images. Surly, accurate 
panicle segmentation is the first step and prerequisite 
for extracting image-based rice panicle traits. After the 
segmentation, many traits can be obtained for breed-
ing and phenotyping, such as: Growth period detection 

(like heading period detection) [15], panicle develop-
ment (area change, color change, maturity test) [23], yield 
estimation [24] and so on. This study provided a robust 
image segmentation method for rice panicles in the field, 
which would potentially facilitate rice breeding or rice 
phenotyping in future.

Methods
Experimental materials and field‑based image acquisition
In this study, the experimental paddy field with a total 
area of 1200  m2 is located in Wuhan, Hubei province, 
China (30.5N, 114.3E). Rice (O. sativa) seeds were sown 
and germinated during the summer of 2016. The field 
plot farming method was explained as followed. Each 
field plot (90 ×  90  cm2) has 20 rice plants of the same 
variety, which are planted in five rows and four columns. 
Considered the edge effect, a guard row of rice plants was 
planted on the boundary between two adjacent plots. In 
total, 71 rice accessions were used for training and testing 
processing in this work. For each plot, two images (top-
view and overhead-view, respectively) were extracted. 
The imaging bracket (Additional file  6: Figure S2) was 
used to obtain rice plot images. Two cameras (Nikon D40 
camera hosting a 23.7 ×  15.6 mm CCD matrix, 35 mm 
focal length lens, 3008 ×  2000 pixels and Nikon D7100 
camera hosting a 23.5 × 15.6 mm CMOS matrix, 17 mm 
focal length lens, 4000 × 6000 pixels), including top-view 
and overhead-view camera were mounted at the top and 
the side of the imaging bracket, respectively. Wireless 
shutter was used to trigger the cameras to take images 
when the imaging bracket moving manually in the paddy 
field.

Generation of patches
For classification problems, the traditional machine 
learning algorithms, such as ANN, must acquire hand-
crafted features. However, these hand-crafted features 
are not guaranteed to provide the subsequent learning 
algorithm with the optimal description of the data. At 
the same time, it is difficult to extract satisfactory fea-
tures for complicated situations. CNN is very similar to 
ANN (they are composed of neurons that have learn-
able weights and biases), except for the difference that 
the inputs of the CNN are images, which means that 
the CNN has the ability to learn features independently 
instead of extracting features manually. Since the input 
image sizes of the CNN should be consistent, the first 
step is to generate training patches with the same size.

The pixel-level segmentation approaches have achieved 
a moderate degree of success. At the same time, ignoring 
the neighborhood information will have a serious impact 
on the edge-preserving ability of the segmentation algo-
rithm. Thus, the idea of processing the image patches 
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Fig. 7 Panicle segmentation results for indoor pot-grown rice images. A Indoor top-view rice images. B Indoor side-view rice image with green 
leaves. C Indoor side-view rice image with yellow leaves
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with similar characteristics instead of single pixels has 
contributed to overcoming the influence of noise, accel-
erating the processing speed, and improving the panicle 
edge-preserving ability. Moreover, the input of the CNN 
requires a unified size of the images. To achieve this goal, 
SLIC was applied to extract superpixel image patches. 
The clustering algorithm with color information in the 
LAB color space and position coordinate were adopted 
to generate superpixel regions. At the same time, the 
superpixel regions with fundamental coincident size and 
shape also meet the requirements of generating uniform 
patches. SLIC algorithm has two parameters: K and M. K 
is the number of superpixel, and M is superpixel compact 
degree. In our paper, the compact coefficient (M) is set to 
10 and remains unchanged for all the samples (training 
set and testing set). In the training process, the number 
of superpixel (K) is set to 20,000 for the training images 
with a resolution of 1815  ×  1971  pixels. For different 
size of input images in the testing process, we expect the 
area of each superpixel regions to be basically consistent. 
So, the fixed proportional relation (1815 × 1971/20,000) 
was used to calculate the number of superpixel (K) for a 
new testing sample. The red irregular polygons in Fig. 8 
represent SLIC superpixel regions. Compared to the 
other superpixel generation algorithm, the computing 
speed is faster than the others, and the algorithm has a 
good ability for edge preservation. However, the shape 

of these SLIC superpixel regions is irregular, and thus, 
they cannot be directly used as CNN input. Therefore, 
a small window called a patch (32 ×  32  pixels), which 
is centered on the weighted centre of the current SLIC 
superpixel region, is given to the CNN. Detailed process-
ing for patches generation using SLIC method has been 
described in Additional file 7: Appendix S2.

Automatic labeling
CNN offline training is a supervised process, which 
means that the input patches and their corresponding 
labels are both needed. Due to the limitation of having 
enormous numbers of samples, it is unrealistic to label 
each patch manually. Thus, a rapid and accurate labe-
ling method was proposed in this work. Two images are 
needed. The first image is an original field rice image 
(Fig.  2A), and the second image is the corresponding 
mask image with a high degree of segmentation accuracy 
(Fig.  2B), which is obtained manually using PhotoShop 
software. The white part in the mask image represents the 
foreground area of the rice panicle. Firstly, SLIC super-
pixel regions were generated as discussed in the previous 
section, such as the red irregular polygons in Fig. 8. The 
black point represents the weighted center of the SLIC 
superpixel region. The region centered on the black point 
and enclosed by a white box (32 × 32 pixels) is the sample 
patch on the corresponding SLIC superpixel region. The 

Fig. 8 Patch generation approaches based on SLIC. The black point represents the weighted center of the current SLIC superpixel region 
(irregularly shaped red regions). The region centered on the black point and enclosed by a white box (32 × 32 pixels) is the training patch on the 
corresponding SLIC superpixel region. (1), (2), and (3) are the zoomed-in versions of the white box training patches, and the percentage is the ratio 
between the foreground panicle regions to the corresponding SLIC superpixel region in each patch
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boxes (1), (2), and (3) in Fig. 8 are the zoom-in versions 
of the white box training patches, and the percentages in 
each patch represent the ratio between the foreground 
panicle areas (the white part in the mask image) to the 
corresponding areas of the SLIC superpixel region. The 
sample patch is labeled category zero (confirmed back-
ground) if the percentage of the current patch is equal to 
zero; otherwise, it is labeled category one (candidate for 
panicle). The advantage of this labeling method is that it 
guarantees that all of the categories zero samples do not 
contain foreground panicle pixels, which can improve 
the classification accuracy of the CNN. However, as long 
as the patch has foreground panicle pixels, regardless of 
how many it has, the labeling method will still tag it to 
a candidate panicle patch, which means that the coarse 
segmentation result is likely to contain background pix-
els. Thus, the optimization processing is needed.

Training set and validation set building
Given the patch labeling proposals, the next question is 
how to build a training set and validation set. Here, 684 
representative rice images are selected as the total sample 
set, in which the water reflection, illumination unbalance, 
cluttered background, rice accession, weather conditions, 
and reproductive stage are all considered (Fig.  1). For 
the progress of the sample patch generation, the num-
ber of category zero (negative) samples is far larger than 
the number of category one (positive) samples. Thus, 
sample balance is necessary. All of the positive samples 
are chosen as a sample set. For the negative samples, 
the Gaussian mixture model (GMM) [25] is applied for 
unsupervised clustering. The mean value and standard 
deviation of each of the training patches in RGB color 
space are extracted as the input vector of GMM. In total, 
9 categories are obtained, and equivalent samples are 
selected randomly from each category to join the sam-
ple set. Considering the complications of the field-based 
environment, the next step is to augment the dataset. 

Thus, to simulate the illumination change, the intensity 
component of the image in HSV color space is adjusted. 
At the same time, the wind influence and image defocus 
phenomenon is also common in the field-based imag-
ing environment, which will cause image blur condition. 
Gaussian blur with 3 ×  3 smoothing Gaussian kernel is 
adopted to simulate this situation. These augmented 
images are all appended to the sample set, from which 
twenty percent of the sample set is randomly selected 
as the validation set (225,472 patches), and the remain-
ing eighty percent is selected as the training set (901,895 
patches) (Additional file 8: Figure S3). Detailed process-
ing and parameters for the samples set building and data 
augmentation have been described in Additional file  7: 
Appendix S2.

CNN training and Panicle‑SEG‑CNN model generation
Caffe, an open source deep learning framework, was used 
in this work [26]. The detailed software implementa-
tion strategy using Caffe is discussed at Additional file 7: 
Appendix S2. Considering that the input size of the color 
patches is 32 × 32 pixels, which is similar to the cifar10 
dataset, a CNN network developed for the cifar10 data-
set was applied for our rice patch classification. Figure 9 
shows the architecture of the CNN network, which is 
composed of 5 layers (3 convolution layers and 2 fully 
connected layers). The detailed hyper-parameters for 
each layer in our CNN network can refer to Additional 
file  9: Figure S4. In this way, the CNN transforms the 
original patch layer by layer from the original pixel values 
to the final class scores.

When the training set is ready, the first step is data 
preprocessing. One necessary process is to subtract the 
mean value over the training set from each pixel. Then, 
the CNN is trained by iteratively passing the training 
images and adjusting the network weights and biases 
based on the classification accuracy in the validation 
set. Additionally, the entire update process is based on 

Fig. 9 Convolutional neural network model for training the patch category classification. The primary architecture of the network is composed of 5 
layers (3 convolution layers and 2 fully connected layers)
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the stochastic gradient descent (SGD) with momentum 
algorithm. The start of the base learning rate is 0.001. 
Then, we decreased the learning rate by a factor of 0.3 
for 20,000 iterations, 100,000 iterations, 160,000 itera-
tions, 240,000 iterations and 320,000 iterations. At the 
same time, we set the start value of the momentum to 
0.9, which remained unchanged for all the training pro-
cessing. And the maximum number of iterations is set to 
600,000. The final training model (Panicle-SEG-CNN) is 
saved to disk according to the Google Protocol Buffers, 
which can be called by using the Caffe C++ interface in 
the testing process. Detailed training processing has been 
described in Additional file 7: Appendix S2.

Coarse segmentation by using the pre‑trained 
Panicle‑SEG‑CNN model
For a testing rice image, the first operation is the test-
ing patches generation. The SLIC superpixel algorithm is 
applied to generate the testing patches. Then, we ran each 
test patch through the pre-trained Panicle-SEG-CNN 
model, to obtain the category of each patch. The SLIC 
superpixel region, which corresponds to the positive test-
ing patch, will be retained as the candidate rice panicle 
region. In turn, the SLIC superpixel region, which cor-
responds to the negative testing patch, will be removed 

as a confirmed background. The coarse segmentation 
result will be joined together by combining the candidate 
panicle patches. As discussed in the Automatic labeling 
section, the coarse segmentation result is likely to con-
tain some background pixels. At the same time, the CNN 
classification cannot ensure that all of the testing patches 
were classified correctly. Thus, the optimization algo-
rithm is needed.

Entropy rate superpixel optimization
Entropy rate superpixel segmentation is another super-
pixel segmentation algorithm. Figure  10A shows the 
entropy rate superpixel image, which has 5000 super-
pixel regions. Figure  10B reflects the corresponding 
SLIC superpixel image, which has 20,000 superpixel 
regions. Both algorithms have the ability to accomplish 
boundary adherence. At the same time, the entropy 
rate superpixel algorithm with fewer superpixel regions 
can achieve a beneficial effect on the edge preservation. 
Meantime, the entropy rate superpixel image has larger 
background regions and relatively smaller foreground 
panicle regions, which provides an advantage for seg-
mentation optimization. So, a relatively small entropy 
rate superpixel region, around 5000 (for image with 
resolution of 1815 × 1971 pixels in training processing), 

Fig. 10 The principle of entropy rate superpixel optimization. A Entropy rate superpixel image. The typical characteristic of the entropy rate 
superpixel image is having larger background regions and relatively small foreground panicle regions, and the algorithm has stronger abilities in 
edge preservation. B SLIC superpixel image. The edge of the SLIC superpixel region is relatively regulated. Sometimes, the foreground pixels and 
background pixels can exist in the same SLIC superpixel region, such as in the white dotted boxes (1) and (2) dpi
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is a good option after experimental analysis (can refer 
to Additional file  7: Appendix S2). For different size of 
input images in the testing process, the fixed propor-
tional relation (1815  ×  1971/5000) was used to calcu-
late the number of entropy rate superpixel region for a 
new testing sample. The process for entropy rate super-
pixel optimization is as follows: First, we assume that the 
coarse segmentation is the correct segmentation result. 
In this place, all of the pixels in the candidate panicle 
regions at the coarse segmentation result were marked 
as a gray value of 255 (panicle pixels), and the pixels in 
the confirmed background regions were marked as a 
gray value of 0 (background pixels). Then, the number of 
panicle pixels and background pixels within each entropy 
rate superpixel region are calculated. The entropy rate 
superpixel region was considered to be the final rice 
panicle region if the ratio of the panicle pixel number to 
the total pixel number in each entropy rate superpixel 
region is greater than the optimization parameter. Here, 
a satisfactory result can be obtained by using the opti-
mization parameter 0.9 in this paper. The detailed opti-
mization parameter discussion can refer to Additional 
file 7: Appendix S2. Subsequently, small regions with an 
area smaller than a predefined area threshold (500 pixels 
in this study) were removed.

The proposed entropy rate superpixel segmentation, as 
a highly efficient and strongly feasible optimization algo-
rithm, has unique advantages in the following respects. 
First, errors could occur in the CNN classification in 
the coarse segmentation result. Some background SLIC 
superpixel regions could be classified to candidate pani-
cle regions. Commonly, relative to the large entropy rate 
superpixel background region, the area of error of the 
SLIC superpixel region accounts for a relatively small 
proportion. Thus, after the optimization, the segmen-
tation noise caused by error classification can be sig-
nificantly suppressed. Second, because the edges of the 
SLIC superpixel regions are relatively well-regulated, 
the foreground pixels and background pixels could 
exist in the same SLIC superpixel region, similar to the 
white dotted boxes (1) and (2) in Fig.  10. For example, 
suppose that these regions are classified into candidate 
panicle regions, which will lead to poor edge segmenta-
tion results in the coarse result. In contrast, entropy rate 
superpixel segmentation has a stronger ability for edge 
preservation, which will retain the accuracy and the 
completeness of the edge extraction after the optimiza-
tion algorithm.

In ERS optimization, there are three parameters (the 
number of entropy rate superpixel regions, balancing 
parameter, and optimization parameter) that need to be 
predefined. Detailed parameters selection can refer to 
Additional file 7: Appendix S2.

Speed up the segmentation project
In this study, the whole segmentation project is devel-
oped in C++ using the OpenCV library [27]. Addition-
ally, the Caffe framework for CNN classification was 
encapsulated in the project by calling the C++ interface. 
The OpenMP, as an application programming interface 
that supports multi-platform shared memory in C++, 
was applied to increase the speed of the project. The per-
formance of the acceleration depends on the CPU fre-
quency and the number of CPU cores. At the same time, 
Caffe’s integration with CUDA and the cuDNN library 
accelerates Caffe processing models. CUDA is a paral-
lel computing platform that was created by NVIDIA, 
and the cuDNN library was developed for deep learning 
with GPU acceleration. The uses of high-performance 
GPUs have changed the traditional opinions about 
acceleration and greatly shorten the processing time of 
the segmentation algorithm. Here, the parallel comput-
ing using GPU is adopted in the CNN classification. In 
this way, the time for the rice panicle segmentation can 
achieve approximately 70 s per image, with a resolution 
of 1815 × 1971 pixels. Of course, the current segmenta-
tion project has the potential to be faster in the future. 
For example, the GPU acceleration can be applied in the 
process of entropy rate superpixel segmentation.
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