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ABSTRACT

Understanding how plants respond to drought can benefit drought resistance (DR) breeding. Using a

non-destructive phenotyping facility, 51 image-based traits (i-traits) for 507 rice accessionswere extracted.

These i-traits can be used to monitor drought responses and evaluate DR. High heritability and large

variation of these traits was observed under drought stress in the natural population. A genome-wide as-

sociation study (GWAS) of i-traits and traditional DR traits identified 470 association loci, some containing

known DR-related genes. Of these 470 loci, 443 loci (94%) were identified using i-traits, 437 loci (93%) co-

localized with previously reported DR-related quantitative trait loci, and 313 loci (66.6%) were reproducibly

identified by GWAS in different years. Association networks, established based on GWAS results, revealed

hub i-traits and hub loci. This demonstrates the feasibility and necessity of dissecting the complex DR trait

into heritable and simple i-traits. As proof of principle, we illustrated the power of this integrated approach

to identify previously unreported DR-related genes.OsPP15was associated with a hub i-trait, and its role in

DRwas confirmed by genetic transformation experiments. Furthermore, i-traits can be used for DR linkage

analyses, and 69 i-trait locus associations were identified by both GWAS and linkage analysis of a recom-

binant inbred line population. Finally, we confirmed the relevance of i-traits to DR in the field. Our study pro-

vides a promising novel approach for the genetic dissection and discovery of causal genes for DR.
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INTRODUCTION

An average annual increase in food production of 44 million

metric tons is needed to meet the global food requirement by

2050 (Tester and Langridge, 2010). It is estimated that

1.8 billion people will be confronted with water scarcity by 2025

(Eliasson, 2015). Scarce and unpredictable water resources

have made the food shortage situation worse, and enhancing

the drought resistance (DR) of crops is an effective and

predictable approach to ensure food security (Hu and Xiong,

2014). Rice (Oryza sativa L.) is a staple food crop feeding more

than half of the world’s population, and is also an important
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model plant for cereal crops (Xing and Zhang, 2010). Rice

production is constrained by drought stress in many rice-

producing areas of China, and DR is thus an important trait to

improve when developing sustainable rice varieties such as

‘‘Green Super Rice’’ (Zhang, 2007).

However, DR is a complex trait that involves various physiological

and molecular responses and can be influenced by a large num-

ber of alleles with small effects (Blum, 2011; Fukao and Xiong,

2013). To understand the genetic basis of DR in rice,

quantitative trait locus (QTL) mapping using recombinant inbred

line (RIL) populations has been conducted (e.g., Yue et al.,

2005, 2006). Yield-related traits and visual scores of plant perfor-

mance during or after drought stress are commonly used to

evaluate DR but, remarkably, very few QTLs have been repeat-

edly detected in different populations or in different years or en-

vironments, even for the same population. Grain yield is severely

reduced under drought conditions. However, grain yield under

drought seems to be controlled by numerous genes with small

effect and is affected bymany uncontrolled environmental factors

in the field. Therefore, it is difficult to reliably identify DR-related

loci using grain yield. Other measurements such as manually as-

sessed leaf-drying or leaf-rolling scores tend to be subjective and

cannot precisely quantify the level of DR, particularly in large

trials.

To enhance reproducibility of DR evaluation in maize, the survival

rate after drought stress at the seedling stage was assessed, and

this led to the characterization of a previously unrecognized

functional DR gene (Wang et al., 2016). However, for many

crops, yield is largely determined during the reproductive phase

when plants are most sensitive to DR (Alam et al., 2014). A

mechanistic understanding of DR mechanisms operative during

the reproductive stages could provide useful tools for breeders,

as well as being interesting biologically. Therefore, there is an

urgent need (i) to develop effective drought phenotyping

methods at the reproductive stage; (ii) to understand dynamic

drought responses; (iii) to identify highly heritable indicative

traits to evaluate DR; and, thereby, (iv) to identify the genetic loci

and causal genes underlying variation in these indicative traits.

In recent years, mechanized phenotyping platforms using non-

destructive image-based techniques have facilitated the

repeated measurement of the same population of individuals as

they grow (Busemeyer et al., 2013; Yang et al., 2014).

Combining image-based phenomic analyses and genome-wide

association studies (GWAS) can reveal the genetic architecture

of growth dynamics under normal growth conditions (Bac-

Molenaar et al., 2015; Campbell et al., 2017). Similarly, image

analysis can be used to understand drought responses (Berger

et al., 2010; Chen et al., 2014a; Neumann et al., 2015). GWAS

is a powerful approach for understanding the genetic basis of

important traits in plants due to its high mapping resolution

(Huang et al., 2010, 2011; Zhao et al., 2011). However, no

studies have combined image and GWAS analyses to dissect

the genetic architecture of DR.

In this study, drought stress was applied to a rice panel (507 ac-

cessions) with diversity in DR. Pot-grown rice plants at the

reproductive stage were phenotyped before drought stress, un-

der drought stress, and during recovery after rewatering.

Image-based traits (hereafter referred to as i-traits) were

measured using a high-throughput and non-destructive pheno-

typing facility. The i-traits were used to monitor dynamic drought

responses and quantify DR. We found that i-traits have high her-

itability under drought stress. To better reflect DR, we mainly

focused on ratio traits (the ratio of the trait value under stress to

the trait value before stress). We performed GWAS and estab-

lished a DR-related association network. A total of 470 loci

were identified based on the variation in i-traits and in traditional

DR-related traits. These loci included some previously known

DR-related genes. Ninety-three percent (437/470) of the loci co-

localized with previously reported DR-related QTLs, and 67%

(313/470) were identified in two different years. As proof of prin-

ciple, a previously unreported gene located in a hub locus in

the DR-related association network was confirmed to be a causal

gene through genetic transformation of rice. In addition to GWAS,

we performed linkage analyses for DR using the i-traits in a RIL

population. Sixty-nine i-trait locus associations were identified

by both GWAS and linkage analyses. In addition, we conducted

in-field drought phenotyping in two separate years and demon-

strated that several i-traits and associated loci could be useful

for DR improvement in the field. Finally, we developed an open-

access database that includes all the images and genotypic

and phenotypic data from this study. This database is aimed at

encouraging data-reuse by the plant science and computer

vision communities, which will be useful to collectively under-

stand and exploit the abundant natural variation of DR.

RESULTS

Capturing Drought Responses by Using a Phenotyping

Platform

To understand the dynamic drought responses of rice plants, we

acquired images of the variety Swarna (Oryza sativa L. ssp. indica)

at eight time points during progressive drought stress and rewa-

tering (Figure 1A and 1B), using the rice automatic phenotyping

platform (RAP) described by Yang et al. (2014). After image

processing, 51 image-based traits (hereafter referred to as ‘‘i-

traits’’) were extracted (Table 1 and Methods). These i-traits

were classified into five categories: biomass-related traits, leaf

stay-green-related traits, morphological traits, histogram texture

traits, and texture traits derived from a gray-level co-occurrence

matrix.

We found that the change in i-traits reflected drought progression

(Figure 1C). These dynamic changes followed three distinct

patterns: (i) drought responses observed only under severe

drought conditions (such as GPAR, which is defined as the

‘‘green projected area ratio’’); (ii) similar changes observed

under both moderate and severe drought conditions (such as

TPA, defined as the ‘‘total projected area’’); and (iii) different

responses observed under moderate and severe drought

conditions (such as GPA, defined as the ‘‘green projected

area’’) (Figure 1D). Dynamic changes in other i-traits are shown

in Supplemental Figure 1. These results suggest that the i-traits

are useful for the study of dynamic drought responses.

Variation of I-Traits in a Natural Diversity Population

To investigate the variation of i-traits during drought responses,

we phenotyped a population of 507 rice accessions, collected a
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total of 70 980 images, and measured 51 i-traits at three distinct

stages (before drought stress, represented by the suffix ‘‘_B’’;

after 5 days of drought treatment with a soil water content of

about 15%, represented by the suffix ‘‘_D’’; and after complete

recovery, represented by the suffix ‘‘_Re’’) (Figure 2A,

Supplemental Table 1, and Methods). The values of all 51

i-traits under drought stress were significantly different from

those before drought stress (P values ranging from 2.27 3 10�3

to 9.54 3 10�258, paired-samples t-test) (Figure 2B). To better

reflect drought response, we focused on ratio traits

(represented by the suffix ‘‘_R’’) calculated as the ratio of the

i-trait value under drought stress to the value before drought

stress. Based on i-traits_R for 507 rice accessions, large

variation in DR was observed (Figure 2B). For example, GPAR,

which is defined as the ratio of the green projected area to the

TPA of a plant and was used to quantify the proportion of

Figure 1. Drought Response Monitored by 51 I-Traits Measured by RAP.

(A) Raw images of a rice variety (Swarna) measured at eight time points during progressive drought stress and rewatering.

(B) Soil water content measured by TDR at eight time points. Two rounds of drought stress were applied to three plants of the rice variety Swarna. Based

on soil water content, the number of days of drought stress, and the stay-green level of the stressed plants after rewatering, the levels of stress, i.e.

‘‘moderate stress’’ (2 days for the first round of stress) and ‘‘severe stress’’ (3 days for the second round of stress), were determined. Error bars

indicate the SE based on three biological replicates.

(C) Normalized value of 51 i-traits during progressive drought stress and rewatering. The range of values at eight time points for each i-trait was

transformed to 0–1 by linear normalization. y = (x � min)/(max � min) where x, y, max, and min represent raw data, normalized data, maximum, and

minimum, respectively.

(D) Three temporal patterns of i-traits (GPAR, TPA, and GPA) during progressive drought stress and rewatering. GPAR, green projected area ratio; TPA,

total projected area; GPA, green projected area. Error bars indicate the SE based on three biological replicates.
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healthy non-senescent tissue under drought stress, significantly

differed between the three stages. There was no obvious varia-

tion in GPAR between accessions before drought stress (the

coefficient of variation was 0.09), but GPAR decreased under

drought stress and the variation between accessions increased

dramatically (P = 2.383 10�254, t-test; the coefficient of variation

was 0.71). After rewatering, GPAR failed to recover but TPA,

did recover (Figure 2C). Stay-green, defined as the ability to

counteract leaf senescence caused by drought stress

(Rosenow et al., 1983), has been commonly used as a measure

of DR and is typically quantified through visual scoring based

on the degree of leaf drying (Crasta et al., 1999; Yue et al.,

2006). Instead of a visual rating, which can be observer biased,

the i-trait GPAR can be used to objectively quantify stay-green.

Most of the i-traits (77.8%) showed high repeatability (w2 > 0.7)

at all three stages. We developed an open-access phenomic

database containing the large amount of data generated in

this study, which can be used for integrative analyses of DR

with other omics datasets (http://plantphenomics.hzau.edu.cn/

search_en.action).

Classification I-trait Definition Additional annotation

Biomass-related TPA Total projected area Shoot weight/biomass

Greenness-related GPA Green projected area Reflects stay-green

GPAR Green projected area ratio Reflects stay-green

LGPA Light-green projected area Reflects stay-green

DGPA Dark-green projected area Reflects stay-green

Morphological-related FDNIC Fractal dimension without image cropping

FDIC Fractal dimension after image cropping

H Height of the bounding rectangle of the plant Plant height

W Width of the bounding rectangle of the plant Plant width

HWR Height/width ratio Reflects tiller angle

TBR Total projected area/bounding rectangle

area ratio

Reflects leaf rolling

PAR Perimeter/projected area ratio Reflects leaf rolling

PC1–PC6 Plant compactness PC6 reflects plant compactness

F1–F14 Relative frequencies

Histogram texture-related M Mean value

SE Standard error

MU3 Third moment

U Uniformity

S Smoothness

E Entropy

Gray-level co-occurrence

matrix texture-related

T1 Correlation

T2 Advantages of the small gradient

T3 Advantages of the large gradient

T4 Energy

T5 Intensity inhomogeneity

T6 Gradient inhomogeneity Reflects stay-green

T7 Mean gray

T8 Mean gradient

T9 Gray entropy

T10 Gradient entropy

T11 Entropy of mixing

T12 Differential moment

T13 Deficit score

T14 Gray mean variance

T15 Gradient mean variance

Table 1. I-Traits Measured by RAP.
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Relevance of I-Traits to Traditional DR-Related Traits

In addition to the i-traits measured non-destructively on the RAP

platform, we measured several traits traditionally used for DR

evaluation including leaf stay-green, leaf water content, and grain

yield-related traits (Figure 2A and Supplemental Table 1). For

stay-green traits, we quantified the greenness of leaves by using

a high-throughput leaf scorer (HLS) described by Yang et al.

(2015). We measured grain yield traits in a highly efficient

manner by using a yield trait scorer (YTS) described by Yang

et al. (2014). To quantify DR in terms of plant productivity, we

used eight yield-related traits under normal and drought condi-

tions to calculate relative values (trait values under drought

Figure 2. Drought Phenotyping of a Natural Population and Variation of I-Traits.

(A) Flow chart showing the procedure for drought phenotyping of 507 rice accessions. The phenotypic data were collected at three different stages

(before drought stress, after 5 days of drought treatment with a soil water content of about 15%, and after complete recovery) using RAP (for i-traits), HLS

(for leaf traits), and YTS (for yield-related traits), and manual measurement.

(B) Heatmap showing the values of 507 accessions before drought stress, under drought stress, and after rewatering, and i-traits_R (under drought

stress/before drought stress). Before drawing the heatmap, the range of values from 507 accessions for each i-trait was transformed to 0–1 by linear

normalization. y = (x � min)/(max � min) where x, y, max, and min represent raw data, normalized data, maximum, and minimum, respectively.

(C)Box plot showing the variation of GPAR, TPA, and the difference between these traits at different stages.P values for pairwise comparisons of drought

stages were calculated using t-tests.
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conditions/trait values under normal conditions, represented by

the suffix ‘‘_R’’) for the following analyses. In the diversity popula-

tion, large variation of traditional DR-related traits was also

observed. For example, , under the same drought conditions

(i.e. the same soil water content) the leaf water content in the pop-

ulation ranged from 6.3% to 72.6%, indicating large variation in

drought avoidance capability (Supplemental Table 2).

Systematic correlation analyses between the i-traits_R and the

traditional DR traits were done to construct a correlation network

(phenotypic Pearson’s correlation coefficient RR 0.3, P < 0.001)

(Riedelsheimer et al., 2012; Xie et al., 2015). This network

contained 390 associations between the i-traits_R and the

traditional DR traits (Figure 3A and Supplemental Table 3). On

average, each i-trait_R was correlated with eight traditional

DR traits. For example, GPAR_R had 20 associations with

traditional traits, including the green leaf area ratio at the whole-

plant level under drought stress (R = 0.66, P < 0.001), the water

content of leaves under stress (R = 0.49, P < 0.001), the harvest

index under drought stress (R = 0.43, P < 0.001), the relative

yield per plant (R = 0.36, P < 0.001), and the relative filled

spikelet number (R = 0.33, P < 0.001) (Figure 3B). We found

that the change in the i-trait TBR_R (total projected area/

bounding rectangle area ratio) was strongly correlated with the

degree of leaf rolling under progressive drought stress and

rewatering (Figure 3C and 3D). We examined the raw images of

507 rice accessions and found that most accessions with

decreased TBR (TBR_R < 1) showed leaf rolling under drought

stress while those with increased TBR (TBR_R > 1) showed

leaf wilting without leaf rolling. Furthermore, we found

that TBR_R was significantly correlated with the actual leaf-

rolling score (R = �0.84, P = 3.39 3 10�29). These results

indicate that TBR_R can be used to quantify the degree of

leaf rolling.

Figure 3. Relevance of I-Traits to Traditional DR-Related Traits.

(A) Correlation network of all ratio i-traits (i-trait values under stress/i-trait values before stress) and traditional DR-related traits.

(B) Correlation network of GPAR_R and traditional DR-related traits. Blue circles, amaranth circles, and lines with arrowheads represent i-trait_R,

traditional DR-related traits, and the correlations between them (Pearson correlation coefficient RR 0.3, P < 0.001), respectively.

(C)Raw images of a rice variety (Swarna) taken at six time points during progressive drought stress and rewatering to show dynamic leaf rolling caused by

drought stress.

(D) Value of TBR_R at six time points corresponding to images I–VI of (C). TBR_R is the ratio of TBR at a given time point to TBR at the first time point

(before stress). Error bars indicate the SE based on three biological replicates.
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We constructed optimized models to predict the shoot weight

under drought stress and after rewatering using all-subset regres-

sion. The models were evaluated using 5-fold cross-validation.

The adjusted determination coefficients (adjusted R2) of the

models containing only the i-trait TPA were larger than 0.70, indi-

cating that TPA can be used to predict biomass (Supplemental

Table 4). We also found that some i-traits collectively could

explain the variance of traditional DR traits (percentage of

variance explained ranging from 20.2% to 78.8% using linear

stepwise regression) (Supplemental Table 5). For example, 17

i-traits in combination explained 54.8% of the variance in the

leaf water content under drought stress; 25 i-traits explained

74.5% of the variance in the green leaf area ratio at the whole-

plant level under drought stress. These results suggest that the

i-traits can be used to not only monitor dynamic drought re-

sponses, but also to evaluate overall DR.

Genome-Wide Association Study of DR

We performed a GWAS of 255 traits (where the same trait at

different stages was regarded formally as a different trait) using

a linear mixed model. After Bonferroni correction, performed as

in previous studies, the genome-wide P value thresholds were

set to 1.21 3 10�6, 1.66 3 10�6, and 3.81 3 10�6 for the whole

population, indica subpopulation, and japonica subpopulation,

respectively (Yang et al., 2014, 2015; Wang et al., 2015). In

total, 6842 associations between 3379 lead SNPs (the SNP with

the lowest P value for a particular association signal) and 252

traits were identified in at least one population. Considering the

slow linkage disequilibrium (LD) decay in rice and based on

previously published studies (Chen et al., 2014b; Yang et al.,

2015; Crowell et al., 2016), adjacent lead SNPs within a region

less than 300 kb were defined as a single locus. A total of 617,

403, 270, and 443 loci were detected using i-traits_B (before

drought), i-traits_D (drought), i-traits_Re (recovery), and

i-traits_R (i-traits_D/i-traits_B), respectively (Figure 4A). We

mainly focused on the GWAS results for the ratio traits

(represented by the suffix ‘‘_R’’) because they theoretically

better reflect DR than trait values under drought stress

(represented by the suffix ‘‘_D’’). We identified a total of 1074

associations between the 59 ratio traits (including i-traits and

traditional DR-related traits) and 793 lead SNPs (corresponding

to 470 loci) (Supplemental Table 6). Among the 470 DR-related

loci, 94% (443/470) were identified using i-traits_R, and these

loci were not randomly distributed in the genome (c2 = 660.08,

P = 6.29 3 10�62), indicating the existence of hotspot regions

where DR-related loci were enriched (Figure 4B).

Previously reported DR-related QTLs were retrieved from the

TropGeneDB (Ruiz et al., 2004; Hamelin et al., 2013), QTARO

(Yonemaru et al., 2010), and PubMed (see Methods) databases.

Ninety-three percent (437/470) of associated loci identified in

this study co-localized with previously reported DR-related

QTLs, including many QTLs controlling yield traits under drought

conditions in the field (Supplemental Table 7). For example, a

locus on chromosome 3 was associated with GPAR_R and

harvest index_R based on the GWAS results, and this locus

co-localized with a reported QTL controlling harvest index

under severe drought stress in the field (Lanceras et al.,

2004); another locus on chromosome 2 associated with

TBR_R co-localized with a reported QTL controlling leaf-rolling

score under drought stress in the field (Price et al., 2002).

These results suggest that the DR-related loci identified in our

study are reliable and could be useful for DR breeding selection.

Some known DR-related genes were significantly associated

with i-traits. For example, OsWRKY13, which encodes a

transcription factor, negatively regulates DR (Xiao et al., 2013).

One SNP in the 1-kb promoter region, one SNP in 50 UTR, and

two SNPs in the coding region causing amino acid changes

were significantly associated with the i-trait GPAR_R (PLMM =

3.073 10�4, 6.763 10�5, 1.083 10�4, and 1.083 10�4, respec-

tively). GPAR_R significantly differed between eight OsWRKY13

haplotype groups (P = 2.16 3 10�12, Kruskal–Wallis ANOVA).

Haplotype H1 was the superior haplotype and was mainly found

in japonica accessions (Figure 4C). Another example is

OsDREB2A, which encodes an AP2/EREBP transcription factor

that positively regulates DR (Cui et al., 2011). Fifteen SNPs in

the promoter region and one SNP in the 50 UTR were

significantly associated with GPAR_R (PLMM < 1 3 10�4);

GPAR_R significantly differed between eight OsDREB2A

haplotype groups (P = 7.99 3 10�8, Kruskal–Wallis ANOVA).

Both H1 and H2 (mainly found in japonica accessions) were the

superior haplotypes (Figure 4D). These results further support

the usefulness of GPAR_R in the genetic dissection of DR.

DR-Related Association Network Based on GWAS

Results

We further constructed a DR-related association network based

on GWAS results to identify hub loci and hub traits for DR. We

found that each locus was associated with two ratio traits on

average (ranging from 1 to 11) and each ratio trait was associated

with 16 loci on average (ranging from 1 to 75).We defined loci with

R5 associations and traits withR20 associations as hub loci and

hub traits, respectively. Thus, 37 hub loci and 18 hub traits

(including 17 i-traits) were identified. Based on the association

network, we found that DR-related yield traits (such as spikelet

fertility_R) were involved in at least two association clusters that

contained hub traits GPAR_R and TBR_R, respectively

(Figure 5A). GPAR_R and TBR_R can be used to quantify

stay-green and leaf rolling at the whole-plant level under drought

stress, respectively (Figure 5B). Stay-green and leaf rolling largely

reflect drought tolerance (DT) and drought avoidance (DA)

mechanisms, respectively (Yue et al., 2006; Fang and Xiong,

2015; Johnson et al., 2015). Strong association signals with

clear peaks were identified for the two traits (42 loci associated

with GPAR_R and 20 loci associated with TBR_R) (Figure 5C),

but only one locus overlapping both traits was found. Based on

these observations, we propose that GPAR_R and TBR_R

largely reflect DT and DA, respectively. To test this hypothesis,

we retrieved reported rice QTLs controlling DR-related

traits (including leaf-drying score, osmotic adjustment, cell

membrane stability, leaf-rolling score, canopy temperature, and

leaf relative water content under drought conditions) from the

database TropGeneDB. We found that most of the loci

associated with GPAR_R and TBR_R overlapped with QTLs

controlling DT and DA-related traits, respectively (Supplemental

Table 8). For GPAR_R, 66.7% (18/27) of the loci overlapped

with previously known QTLs controlling DT-related traits such

as leaf-drying score, osmotic adjustment, and cell membrane

stability. For TBR_R, 83.3% (10/12) of the loci overlapped with
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QTLs controlling DA-related traits such as leaf-rolling score, can-

opy temperature, and leaf relative water content under drought

conditions.

Of the 470 loci in the DR-related association network, 443 loci

were identified using i-traits and 52 loci were identified using

traditional DR traits. The low number of loci identified using tradi-

tional DR traits is perhaps due to the lowmapping power of these

traits. When using a less stringent genome-wide P value

threshold (1.00 3 10�3) for traditional DR traits, 127 out of 443

loci associated with i-traits were also associated with traditional

DR traits. For example, the lead SNP sf1016269098 was associ-

ated with GPAR_R (PLMM = 1.613 10�6) and yield_R (PLMM = 1.07

3 10�4), and the genotype C SNP allele was the superior allele for

both GPAR_R and yield_R (Figure 5D).

Figure 4. DR-Related GWAS Results.

(A) Venn diagram showing the number of loci

associated with i-traits before drought stress

(I-traits_B), under drought stress (I-traits_D),

after rewatering (I-traits_Re), and ratio i-traits

(I-traits_R).

(B) Chromosomal distribution of loci associated

with ratio traits (including i-traits and traditional

traits). Each vertical line indicates a lead SNP.

(C) Local Manhattan plot and LD statistic r2 values

for a known DR-related gene, OsWRKY13 (gene

body and 1-kb upstream region), associated with

GPAR_R.

(D)ComparisonofGPAR_Ramongeighthaplotype

groups and the number of accessions included in

eachOsWRKY13 gene haplotype group.

(E) Local Manhattan plot and LD statistic r2 values

for a known DR-related gene, OsDREB2A (gene

body and 1-kb upstream region), associated with

GPAR_R.

(F)ComparisonofGPAR_Ramongeight haplotype

groups and the number of accessions included in

each OsDREB2A gene haplotype group.

The dotted line, solid lines, white rectangles, and

black rectangles represent the 1-kb promoter re-

gion, introns, UTRs, and exons, respectively. The

arrow indicates the transcription start site and

transcription orientation. The haplotypes were

determined using the SNPs with a MAF R 0.05.

The distribution of i-traits for each haplotype group

is shown in the box plot. The i-trait values of mul-

tiple haplotype groups were compared using

Kruskal–Wallis one-way ANOVA. The number of

rice accessions in each haplotype group is shown

on the histogram.

For theManhattan plot,�log10P values calculated

using a mixed linear model are plotted against the

position of the SNPs.

Identification of a New DR-Related

Gene

T6 is a texture trait derived from a gray-level

co-occurrence matrix. T6_R (ratio of T6

under stress/before stress), which ranked

second in the list of hub traits, was positively

correlated with the green leaf area ratio

under stress (Pearson correlation coefficient

R = 0.42, P < 0.001), leaf water content under stress

(R = 0.38, P < 0.001), yield_R (R = 0.29, P < 0.001), and bio-

mass_R (R = 0.41, P < 0.001). These results indicate that T6

may also be related to the stay-green trait. Two known

DR-related genes, OsNCED3 (Cai et al., 2015) and OsDREB1E

(Chen et al., 2008), were located in the loci associated with

T6_R. Using RiceNet (rice gene network prioritization web

server) (Lee et al., 2015), we found that an unreported

gene (OsPP15, LOC_Os01g62760) was associated with

these two known genes (see Methods). OsPP15 encodes a

PP2C homolog of ABI1, a key member in the abscisic acid

(ABA) signaling pathway (Meyer et al., 1994), and was

associated with T6_R (PLMM = 1.63 3 10�4 for SNP

sf0136344957) (Figure 6A). T6_R significantly differed

between seven OsPP15 haplotype groups (P = 5.18 3 10�8,
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Kruskal–Wallis ANOVA). Haplotype H1 (primarily found in

indica accessions), and H7 (primarily found in japonica acces-

sions) were superior and inferior haplotypes, respectively

(Figure 6B). To confirm OsPP15 as a causal gene, it was

overexpressed in rice Zhonghua 11. Measurements of leaf

relative water content, relative electrolyte leakage, and survival

rate (Figure 6C and 6D) indicated that the OsPP15-

overexpression lines were hypersensitive to drought stress,

which is in agreement with the predicted role of OsPP15 as a

negative regulator of DR.

Validation by Repeated GWAS in Different Years and

Linkage Analyses

To further validate the reliability of i-traits in DR studies, we

selected 300 diverse accessions from the association population

for drought phenotyping, again using the RAP platform, in 2016.

Based on the phenotypic data from two years (2013 and 2016),

41.2% (21/51) of i-traits_R showed high heritability (H2 > 0.5)

while H2 values for all the traditional DR ratio traits were less

than 0.5 (Supplemental Table 9). For example, the heritability of

Figure 5. Association Network Based on GWAS Results.

(A) Local association network containing twomain association clusters containing the hub traits GPAR_R and TBR_R. The pink and blue circles represent

genetic loci and DR-related traits, respectively; the lines represent significant associations between loci and traits.

(B)Raw images of two rice accessions taken before stress and under stress (first row); green plant pixels andGPAR (second row); segmented images and

bounding rectangle of a plant and TBR (third row). Scale bars, 0.2 m.

(C)GWAS plots for GPAR_R and TBR_R. ‘‘_R’’ indicates that the trait value is the ratio of stress/non-stress values. For the Manhattan plot (left),�log10 P

values from a genome-wide scan are plotted against the position of the SNPs on each of 12 chromosomes, and the horizontal gray dotted line indicates

the genome-wide P value threshold; for the quantile–quantile plot (right), the horizontal axis shows the expected �log10-transformed P values, and the

vertical axis indicates the observed �log10-transformed P values.

(D)Manhattan plots of the same genomic region associated with GPAR_R and Yield_R (left panel). Based on the genotype of SNP sf1016269098, the rice

accessions were classified into two groups. The distributions of GPAR_R and Yield_R for the two groups are shown in the box plot. The trait values of the

two groups were compared using t-tests.
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GPAR_R and relative yield per plant was 0.80 and 0.34,

respectively, and GPAR_R was significantly correlated with

relative yield per plant in both years (R = 0.36, P < 0.001 in

2013; R = 0.42, P < 0.001 in 2016). Although the population size

was smaller in 2016 and environmental conditions were

different across the two years, 66.6% (313/470) of the loci

identified in 2013 were also identified in 2016 due to the high

heritability of the i-traits (Supplemental Table 10). For example,

SNP sf0801828823 was associated with GPAR_R in both years

(PLMM = 2.88 3 10�12 in 2013; PLMM = 2.06 3 10�5 in 2016),

and the genotype T allele of the lead SNP was the superior

allele for GPAR_R in both years (Figure 7A).

As described above, most DR-related loci co-localized with pre-

viously reported DR-related QTLs. To further confirm the useful-

ness of the i-traits in genetic studies, we conducted drought

phenotyping of a biparental mapping population with 192 RILs

using the RAP platform and performed QTL mapping analyses.

Several QTLs with high significance levels were identified using

i-traits_R. For example, a strong QTL on chromosome 1 (peak

at 84.01 cM, logarithm of odds [LOD] = 5.69) controlling GPAR_R

and a strong QTL on chromosome 2 (peak at 94.81 cM, LOD =

7.31) controlling TBR_R were identified (Supplemental

Figure 2). Strikingly, we found that some QTLs identified by

linkage analysis overlapped with GWAS loci. For example, a

QTL on chromosome 3 (identified by linkage analysis)

controlling both the i-trait GPA and green leaf area (measured

using HLS in a destructive manner) under drought conditions

co-localized with a locus (identified by GWAS) significantly

associated with both traits. GWAS had obviously higher

mapping resolution than the linkage analysis (Figure 7B). A total

of 69 i-trait locus associations were identified by both GWAS

and biparental QTL mapping (Supplemental Table 11).

Relevance of I-Traits to DR Performance in the Field

We further examined whether the i-traits are relevant to DR

performance in the field. The same association population was

phenotyped for DR in the field, facilitated by a movable rain-off

shelter, in 2011 and 2016. Relative yield (stress/non-stress) and

two leaf-rolling traits were measured. The two leaf-rolling traits

included the number of days from the start of drought treatment

to the start of leaf rolling (‘‘days to leaf rolling’’ for short) and the

number of days from the start of leaf rolling to irreversible leaf

rolling in themorning (‘‘days during leaf rolling’’ for short). Drought

stress was initiated at the early panicle development stage (see

Methods). Strikingly, we found many significant phenotypic

correlations between the i-traits and the traditional DR-related

traits in the field. For example, GPAR_R and GPA_R were signif-

icantly correlated with relative yield, and TBR_R and PC6_R were

significantly correlated with the leaf-rolling traits (Figure 7C and

Supplemental Table 12). A total of 95 loci significantly

associated with i-traits_R were also associated with relative

yield and leaf-rolling traits in the field (PLMM < 1 3 10�3), and

the i-traits_R had higher power to detect these loci than tradi-

tional DR traits (Supplemental Table 13). For example, the lead

Figure 6. Identification of the New DR-

Related Gene OsPP15.

(A) Local Manhattan plot and LD statistic r2 for

OsPP15 (gene body and 1 kb upstream of the

gene). The dotted line, solid lines, white rectan-

gles, and black rectangles represent the 1-kb

promoter region, introns, UTRs, and exons,

respectively. The arrow indicates the transcription

start site and transcription orientation.

(B) Comparison of T6_R between the seven

haplotype groups of OsPP15. The haplotypes

were determined based on OsPP15 SNPs with a

MAF R 0.05. The distribution of T6_R for each

haplotype group is shown in the box plot. The

i-traits of the seven haplotype groups were

compared using Kruskal–Wallis one-way ANOVA.

The number of rice accessions in each haplotype

group is shown on the histogram.

(C) Images of two independent OsPP15-over-

expression lines (OE-34 and OE-61) and a nega-

tive transgenic line (control) before drought stress

and after rewatering. The OE lines were more

sensitive to drought stress than the negative

control.

(D) Relative expression level, relative leaf water

content, and relative electrolyte leakage under

drought stress, and the survival rate after re-

watering are shown for three lines (OE-34, OE-61,

and negative transgenic control). Error bars

indicate the SD of three biological replicates and

asterisks indicate significance (**P < 0.01, *P <

0.05; t-test).
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Figure 7. Validation by Repeated GWAS, Linkage Analyses of I-Traits, and DR Phenotyping in the Field.

(A) Local Manhattan plots of the same genomic region associated with GPAR_R across 2 years (2013 and 2016) and box plots showing the GPAR_R

distribution for two genotype groups with different alleles of SNP sf0801828823. The GPAR_R values of the two genotype groups were compared using a

t-test.

(B) Linkage analyses and GWAS of GPA (a stay-green-related i-trait) and green leaf area (measured by HLS in a destructive fashion) under drought stress.

The QTL on chromosome 3 controlling both traits (identified by linkage analyses) co-localized with the locus associated with these traits identified by

GWAS.

(legend continued on next page)
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SNP sf0719639267was associated with GPAR_R (PLMM = 2.013

10�17) and relative yield in the field in both years (PLMM = 1.10 3

10�5 in 2011, PLMM = 2.67 3 10�5 in 2016), and the genotype

T SNP allele was the superior allele for both traits (Figure 7D).

These results suggest that i-traits are also useful for quantifying

DR in the field.

DISCUSSION

DR has been regarded as a very complex trait involving dynamic

and diverse responses that are controlled by a large number of

small-effect loci. Small-effect loci can be difficult to detect using

traditional DR-related traits. Several factors, such as heading

date variation and heterogeneity of soil water content, severely

affect the accuracy of DR phenotyping. New DR-related traits

with high heritability that are correlated with yield performance

under drought conditions in the field are urgently needed (Hu

and Xiong, 2014). Recently, a time-series of transcriptional,

physiological, and metabolic data were acquired from Arabidop-

sis plants during a slow transition from well-watered to drought

conditions and used to dissect early responses to drought

(Bechtold et al., 2016). Several other studies have investigated

the genetic basis of DT using different traits. For example,

GWAS of drought-induced proline accumulation in Arabidopsis

was performed and led to the identification of a new proline

effector gene (Verslues et al., 2014). GWAS of ABA levels under

drought conditions has also been performed in Arabidopsis to

understand the drought-sensing and signaling mechanism

(Kalladan et al., 2017). Because optics-based phenotyping

techniques facilitate the measurement of not only traditional

traits but also new digital traits (Yang et al., 2014), these

techniques provide opportunities to identify new heritable

DR-related traits. In this study, we identified 51 drought-induced

i-traits with high heritability. These i-traits can be used to monitor

dynamic responses to drought and evaluate DR levels. Impor-

tantly, our results demonstrate that i-traits are useful for predicting

DR performance in the field.

In our study, hundreds of DR-related loci were identified by

GWAS of i-traits, including some a priori DR-related genes.

Most of these loci co-localized with previously reported DR-

related QTLs and were identified again in a second year due to

the high heritability of i-traits. An association network defined us-

ing GWAS results demonstrated the necessity and practicability

of dissecting complex DR into heritable and simple i-traits. In

this study, we focused on two hub i-traits (GPAR_R and

TBR_R), which reflect stay-green and leaf rolling, respectively.

Since stay-green and leaf rolling are major indices reflecting DT

and DA, respectively, GPAR_R and TBR_R may be very useful

for evaluating DT and DA in a high-throughput manner. For

GPAR_R, most of the associated loci overlapped with previously

reported QTL controlling DT-related traits including leaf drying,

osmotic adjustment (Blum, 2017), and cell membrane stability.

For TBR_R, most of the associated loci overlapped with QTL

controlling DA-related traits including leaf-rolling score, canopy

temperature, and leaf relative water content. These results

strongly support the usefulness of these two hub i-traits (GPAR_R

and TBR_R) in the evaluation of DT and DA, respectively.

Abundant diversity in rice facilitates the identification of superior

alleles for breeding. In addition to GWAS, i-traits were used for

biparental QTL mapping and several strong DR-related QTLs

were identified. To further examine the relevance of i-traits to

DR performance in the field, we performed drought phenotyping

of the same population in the field across two years. By

comparing the phenotypic data and GWAS results between i-

traits_R and traditional DR traits in the field, we found that

some i-traits were significantly correlated with DR performance

in the field. Many loci identified by mapping i-traits were associ-

atedwith traditional traits in the field (such as relative yield). These

results suggest that the i-traits could be useful for DR prediction

when we have difficulty in phenotyping a large number of genetic

mapping or breeding populations in the field without appropriate

controls for environmental factors. Our study also provides a new

approach (i-trait-based GWAS) to reveal the genetic architecture

of complex traits.

In comparison with biparental QTL mapping, GWAS can provide

higher mapping resolution (Huang and Han, 2014). Despite the

high mapping resolution, it is difficult to reveal a causal gene

underlying the association signal due to slow LD decay in rice.

In this study, using the gene network data from RiceNet and

GWAS results, an unreported DR-related gene, OsPP15, was

identified, and its function in DR was confirmed by haplotype

analyses and genetic transformation experiments. This work

provides an example of fast identification and verification of

candidate genes for DR through i-trait-based genetic analysis.

METHODS

Plant Material and Experimental Design

A total of 529 O. sativa accessions including landraces and elite varieties

were used in this study. Of these accessions, 22 accessions that were

extremely small or imposed of inaccurate stress treatment, were

excluded for subsequent data analyses. Detailed information about

the accessions and genotypes has been reported in previous studies

(Xie et al., 2015; Zhao et al., 2015). The remaining 507 accessions

included 292 indica accessions and 139 japonica accessions that were

classified into two groups based on heading date. The germination

dates were staggered to allow these groups to flower synchronously.

Seeds were sown in the field and 20-day-old seedlings were trans-

planted to the greenhouse of a high-throughput rice phenotyping facility

at Huazhong Agricultural University in 2013. In 2016, 300 diverse acces-

sions, with abundant genetic diversity and large phenotypic variation of

DR (based on the results from 2013), were planted for a second round of

drought phenotyping.

Phenotyping

The phenotyping facility used in the study contained the following three

sections: RAP, HLS, and YTS. The rice plants were transported to the

RAP, which captured 14 color images from different angles, then 51

(C) Scatter diagram showing the correlation between GPAR_R and relative yield (stress/non-stress) in the field in two different years (2011 and 2016), and

between TBR_R and days to leaf rolling (number of days from the start of drought treatment to the start of leaf rolling) in the field in 2011.

(D) Local Manhattan plots of the same genomic region associated with GPAR_R and relative yield in the field in two different years and box plots showing

the distribution of these traits for two genotype groups with different alleles of SNP sf0719639267. The trait values of the two genotype groups were

compared using a t-test.
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image-based traits (termed ‘‘i-traits,’’ including one biomass-related, four

color-related, 25 morphological-related, and 21 texture-related features)

were extracted through image analyses. After the rice leaves were cut

and fed to the HLS, 10 leaf color-related traits were obtained. After har-

vesting seeds, 11 yield traits were measured by YTS. Biomass-related

traits were measured by weighing.

To determinewhether i-traits measured byRAP are useful measures of the

dynamic changes of rice plants in response to drought stress, we pheno-

typed three plants of a rice variety (Swarna) at eight time points during pro-

gressive drought stress and rewatering. The soil water content was moni-

tored by time domain reflectometry (TDR) using a TRIME-PICO32 (IMKO

Micromodultechnik, Ettlingen, Germany). After the first round of pheno-

typing, irrigation was stopped immediately; therefore, the phenotypes

measured at day 0 corresponded to the phenotypes before drought

stress. Moderate stress (the first round of drought stress applied for 2

days) and severe stress (the second round of drought stress applied for

3 days) were applied. The soil water content during the second round of

stress was lower than that during the first round of stress. Based on im-

ages of rice plants, chlorophyll began to degrade during the second round

of stress but not during the first round of stress.

For phenotyping the natural population (507 accessions were actually

used), a total of eight healthy plants for each accession were grown in

pots filled with 4.5 kg of soil per pot. Four plants for each accession

were subjected to drought stress at the panicle development stage, at

which rice is most sensitive to drought stress. The experiment followed

a randomized complete block design and each of the four blocks con-

tained one plant of each accession. Two plants of each accession were

used to trace panicle development in a destructive way. The remaining

two plants were used to quantify the yield traits under normal conditions

to obtain the relative yield-related traits (the ratios of yield-related trait

values under drought stress to those under normal conditions), which

can better reflect DR. However, unexpectedly high temperatures from

July to August at Wuhan resulted in low spikelet fertility under normal con-

ditions (Supplemental Figure 3). To reduce the effect of high temperatures

on yield traits, we excluded rice accessions with spikelet fertility <60%

under normal conditions when calculating the relative yield traits.

Therefore, the relative yield-related traits for 222 accessionswere retained

for subsequent analyses.

When rice plants grew to the booting stage (panicle elongation), the four

plants designated for stress treatment were phenotyped by RAP before

stress treatment. Irrigation was then stopped to impose drought stress.

The soil water content was monitored by TDR using a TRIME-PICO32

(IMKO Micromodultechnik). When the soil water content decreased to

15% (TDR value), the plants were watered once per day to maintain the

soil water content at 15% (TDR value) for 5 days. Four replicates of

each accession were then phenotyped by RAP again to collect phenotype

data under drought stress. The interval between the two rounds of pheno-

typing was approximately 1 week, depending on the rate of decline in soil

water content. After the second round of phenotyping by RAP, two repli-

cates were immediately sampled for measurements of leaf color-related

traits by HLS and shoot weight-related traits by weighing. The remaining

two replicates were rewatered at the same time. When the accessions

entered the maturity stage, the two replicates were phenotyped by RAP

and then harvested for measurements of yield traits by YTS and

biomass-related traits by weighing. Additionally, two replicates grown un-

der normal conditions were harvested and yield traits and biomass were

measured to calculate relative yield traits and relative biomass (the ratios

of traits under drought/normal conditions). Drought phenotyping of 300

rice accessions in 2016 was performed in the same way as in 2013.

Image Acquisition and Processing

Fourteen side-view images from different angles for each rice plant were

acquired using a charge-coupled device camera (Stingray F-504C;

Applied Vision Technologies, Germany). The image processing was per-

formed using LabVIEW (National Instruments, USA).

Image Segmentation

The original RGB image was transformed to HSI color space. Background

pixels and plant pixels were discriminated using fixed thresholds. A binary

image of the plant was generated by setting plant pixels as one and back-

ground pixels as 0.

Color Component Extraction

When the binary image of the plant was used as a mask, an RGB image

without background was generated from the original RGB image. The

ExG (excessive green) and ExR (excessive red) planes of the RGB image

were extracted to determine the green part of the rice plant.

If the ExG value was greater than a predefined ExG threshold and the ExR

value was less than a predefined ExR threshold, the corresponding pixels

were defined as greenness pixels. The i2 component was extracted to

determine yellow part of the rice plant.

Edge Detection and Bounding Rectangle Detection

The edge of the plant was extracted using IMAQ EdgeDetection VI.

The bounding rectangle was defined as the rectangle of minimum

area that surrounded a plant, and was detected using IMAQ Particle

Analysis VI.

The equations are shown in Supplemental Table 1.

I-Trait Calculations

d Total projected area (TPA): Number of foreground pixels attributed

to the rice plant.

d Green projected area (GPA): Number of foreground pixels attributed

to the green part of the rice plant.

d Green projected area ratio (GPAR): GPA/TPA.

d Light-green projected area (LGPA): Number of foreground pixels

attributed to the pale-green part of the rice plant. The HLS segmen-

tation values of the pale-green part in an imagewere identified using

a standard color chart.

d Dark-green projected area (DGPA): Number of foreground pixels

attributed to the dark-green part of the rice plant. The HLS segmen-

tation values of the dark-green part in an image were also identified

using a standard color chart.

d Fractal dimension without image cropping (FDNIC): Boxes with a

box size of dk were superimposed on the object of interest, and

the number of boxes that were needed to cover the object, denoted

as Ndk
was calculated. This process was repeated with decreasing

dk until dk approached pixel size. The equation is shown in

Supplemental Table 1.

d Fractal dimension after image cropping (FDIC): The original image

was cropped to a smaller size with the bounding rectangle of the

rice plant, and the FD was calculated using the above steps.

d H: Height of the bounding rectangle of the object.

d W: Width of the bounding rectangle of the object.

d Height/width ratio (HWR): H/W.

d Total projected area/bounding rectangle area ratio (TBR): A/(H3W)

d Perimeter/projected area ratio (PAR): The length of the outline of a

rice plant was calculated, then the length was divided by the pro-

jected area.

d Plant compactness (PC1–PC6): The image was divided into several

subimages using a (5 3 5) window. The ratio of the number

of foreground pixels to the total number of pixels in each subimage

(5 3 5) was calculated and denoted as plant compactness in each

subimage (PCs). PCs were categorized into six classes: C1: <10%,

C2: 10%–20%, C3: 20%–40%, C4: 40%–60%, C5: 60%–80%, C6:

80%–100%. Then the number of PCs belonging to each class, de-

noted asNDi (i = 1, 2.6), was counted. Lastly, leaf compactness of

class i (PCi) was computed as the percentage of NDi compared with

the sum of NDi. The levels of PC3 under drought stress were

not significantly different from the levels under normal conditions
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(P > 0.05, paired-samples t-test), so this trait was not included in the

study.

d Relative frequencies (F1–F14):

The equations are shown in Supplemental Table 1.

The levels of F11 under drought stress were not significantly

different from the levels under normal conditions (P > 0.05,

paired-samples t-test), so this trait was not included in the study.

d Six histogram traits: the mean value (M), the SE, the third moment

(MU3), the uniformity (U), the smoothness (S), and the entropy (E).

The equations are shown in Supplemental Table 1.

d Fifteen gray-level co-occurrence matrix texture traits: the correla-

tion (T1), the advantages of the small gradient (T2), the advantages

of the large gradient (T3), the energy (T4), the intensity inhomogene-

ity (T5), the gradient inhomogeneity (T6), the mean gray (T7), the

mean gradient (T8), the gray entropy (T9), the gradient entropy

(T10), the entropy of mixing (T11), the differential moment (T12),

the deficit score (T13), the gray variance (T14), and the gradient vari-

ance (T15). The equations are shown in Supplemental Table 1.

Leaf Traits Measured by HLS

d Green leaf area (GLA): Represents the area of green leaves per

plant.

d Total leaf area (TLA): Represents the leaf area (including green

leaves and yellow leaves) per plant.

d Green leaf area ratio: GLA/TLA.

d Yellow leaf area: Represents the total area of yellow leaves per

plant.

d Green-2 leaf area (GLA2): Represents the area of leaves whose co-

lor is similar to group 2 of the leaf color chart designed by the IRRI.

d Green-2 leaf area ratio: GLA2/GLA.

d Green-3 leaf area (GLA3): Represents the area of leaves whose co-

lor is similar to group 3 of the leaf color chart designed by the IRRI.

d Green-3 leaf area ratio: GLA3/GLA.

d Green-4 leaf area (GLA4): Represents the area of leaves whose co-

lor is similar to group 4 of the leaf color chart designed by the IRRI.

d Green-4 leaf area ratio: GLA4/GLA.

Analyses of Phenotypic Data

The broad-sense heritability (H2) was calculated using ANOVA based on

the phenotypic data from 2 years: H2 = VG/(VG + Ve/N); phenotypic vari-

ance was partitioned into genotypic (VG) and environmental (Ve) variance

(Chen et al., 2014b); N represents the number of years (N = 2 in this study).

The repeatability (w2) was calculated using ANOVA from the phenotypic

data for replicated plants in 2013: w2 = Vg/(Vg + Ve/n); phenotypic

variance was partitioned into genotypic (Vg) variance and variance due

to differences in repeated measures (Ve); n represents the number of

replicated plants of the same accession (n = 4, 4, 2 for traits measured

before drought stress, under drought stress, and after rewatering,

respectively) (Chen et al., 2014a).

Paired-sample and independent-sample t-tests, stepwise linear regres-

sion, and calculation of pairwise Pearson correlation coefficients (R)

were performed using IBM SPSS version 19 (IBM, Armonk, USA).

A heatmap was drawn with HemI software (Deng et al., 2014). Before the

heatmap was drawn, the raw phenotypic data were linearly normalized as

y = (x � min)/(max � min) in which x, y, max, and min represent raw data,

normalized data, maximum, and minimum, respectively.

All-subset regression was adopted for the modeling of shoot weight, and

adjusted R2 (adjusted determination coefficients), AIC (Akaike’s informa-

tion criterion), MAPE (mean absolute percentage error), and SDAPE (the

SD of absolute percentage error) were calculated using SAS 9.2 (SAS

Institute). To evaluate the prediction performance of a model, we indepen-

dently performed 5-fold cross-validation (Hallmark et al., 2007; Yang et al.,

2014) 10 times. For 5-fold cross-validation, five steps were conducted as

follows: (i) the rice accessions were randomly assigned into five groups; (ii)

one of the five groups was selected as a testing set and the other four

groups were selected as a training set; (iii) MAPE, SDAPE, and R2 of the

testing set were calculated; (iv) the final MAPE, SDAPE, and R2 were

calculated as the mean values of 10 reruns of 5-fold cross-validation.

Genome-Wide Association Study

A total of 4 358 600, 2 863 169, and 1 959 460 SNPs (minor allele

frequency R0.05; the number of accessions with minor alleles R6)

were used for GWAS of the whole population, the indica subpopulation,

and the japonica subpopulation, respectively. The genotypes of these

SNPs were obtained from the RiceVarMap database (http://ricevarmap.

ncpgr.cn/) (Zhao et al., 2015). The mean calculated from replicates

for each trait was used for the GWAS. The same trait measured at

different stages was regarded as a different trait for association

analyses. Ratio traits were calculated by dividing the trait value under

stress by the value under non-stress conditions. In total, we performed

GWAS for 255 traits, including i-traits measured by RAP and traditional

traits measured by HLS, YTS, and manual measurement. To better

reflect drought responses or DR, we mainly focused on the ratio traits in

this study.

Considering the small effects of DR-related loci and the low heritability

of DR, the suggestive P value threshold (1/n) was set to control

the genome-wide type I error rate of GWAS (Duggal et al., 2008;

Li et al., 2013; Yang et al., 2014; Wang et al., 2015); n represents

the effective number of independent SNPs calculated by the

GEC software tool (Li et al., 2012). The thresholds were 1.21 3 10�6,

1.66 3 10�6, and 3.81 3 10�6 for the whole population, the indica

subpopulation, and the japonica subpopulation, respectively. GWAS

was performed using a mixed-model approach with the factored spec-

trally transformed linear mixed models (FaST-LMM) program (Lippert

et al., 2011), and independent lead SNPs were obtained by using

the ‘‘clumping’’ function of Plink (Purcell et al., 2007). All genes within

100 kb both upstream and downstream of the lead SNPs were

extracted to identify potential candidate genes. Considering the slow

LD decay in rice and based on previously published studies (Chen

et al., 2014b; Yang et al., 2015; Crowell et al., 2016), adjacent lead

SNPs in a region less than 300 kb were defined as a single locus.

An association network based on associations between loci and

DR-related traits (mainly composed of ratio traits) was displayed using

Cytoscape software (http://www.cytoscape.org/) (Shannon et al.,

2003). To test whether the DR-related loci were randomly distributed

in the genome, we partitioned the whole genome into 2-Mb segments,

counted the number of loci in each segment, and performed a

c
2 test using SPSS version 19 (IBM).

Haplotypes were determined based on the genotypes of SNPs with a

MAF R0.05, and the LD statistic r2 was calculated using Haploview 4.2

(Barrett et al., 2005). Multiple comparisons of groups of accessions with

different haplotypes were conducted using a non-parametric test (Krus-

kal–Wallis one-way ANOVA) using SPSS version 19 (IBM).

Retrieval of Reported DR-Related QTLs from Databases

Previously reported DR-related QTLs were retrieved from TropGeneDB

(http://TropGeneDBdb.cirad.fr/TropGeneDB/JSP/interface.jsp?module=

RICE), QTARO (http://qtaro.abr.affrc.go.jp/), and PubMed (https://www.

ncbi.nlm.nih.gov/pubmed/). A total of 387 QTLs were retrieved by

selecting ‘‘DROUGHT: non root traits’’ (‘‘Trait’’ menu) and ‘‘Water stress’’

(‘‘Water condition’’ menu) in TropGeneDB; a total of 111 QTLs were

retrieved by selecting ‘‘Resistance or Tolerance’’ (‘‘Major category’’

menu) and ‘‘Drought tolerance’’ (‘‘Category of object character’’ menu)

in QTARO; a total of 239 QTLs were retrieved from the literature by input-

ting ‘‘drought’’ ‘‘QTL’’ ‘‘rice’’ (‘‘Text Word’’ menu) in PubMed.
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Identification of New DR-Related Genes

The web server RiceNet was used to predict new candidate genes for a

phenotype or pathway by submitting guide genes with known functions

(http://www.inetbio.org/ricenet). A total of 21 different datasets are inte-

grated into RiceNet (v 2.0). These datasets contain information about

co-expression, protein–protein interactions, and genetic interactions in

diverse species. The genes that are closely connected to the guide

genes were regarded as potential new candidates. In this study two

known DR-related genes, OsNCED3 (LOC_Os03g44380) and OsDREB1E

(LOC_Os04g48350), were located in loci associated with T6_R.

In this study, the unreported gene OsPP15 (LOC_Os01g62760) was pre-

dicted to be connected with the two known DR-related genes based on

RiceNet. Since OsPP15 was associated with T6_R based on GWAS,

this gene was selected as a newDR-related candidate gene for further ge-

netic transformation experiments.

Genetic Transformation and Functional Validation of OsPP15

A DNA fragment harboring the coding region of the candidate gene

OsPP15 was amplified from the genomic DNA of japonica rice cv. Zhong-

hua 11 using primers PP15-1301F (50-TAC GAA CGA TAG CCG GTA CCA

TGGCCGAGA TCTGCTGCGAG-30) and PP15-1301R (50-TTGCGGACT

CTA GAG GAT CCT CAC AAT CCC CGG CGG AGA TC-30), and the prod-

uct was cloned into the binary vector pCAMBIA1301U (digested by KpnI

and BamHI) by Gibson assembly (Gibson et al., 2009). The sequence-

confirmed construct was transformed into Zhonghua 11 via Agrobacte-

rium-mediated transformation according to standard methods (Hiei

et al., 1994). To identify overexpression and negative transgenic lines,

we quantified the expression level of OsPP15 at the T0 generation by

real-time qRT–PCR using primers PP15-qF2 (50-TAT GGG ACG TCG

TGA CCA AC-30) and PP15-qR2 (50-AGG ACT CCG CCT TGC TTA TC-30).

Two independent overexpression lines (OE-34 and OE-61) and a negative

transgenic line (CK) were planted in pots and treatedwith drought stress at

the 4-leaf stage. When the leaves of CK rolled due to drought stress (soil

water content of 13.9% ± 1.6% [water (g)/dry soil (g)]), the stressed seed-

lings of the three lines (OE-34, OE-61, CK) were sampled for the measure-

ment of leaf relative water content (RWC) and relative electrolyte leakage

(REL) (three replicates for each line). The stressed seedlings in other pots

were rewatered and the survival rates were calculated (three replicates for

each line).

Leaf RWC was measured using the following procedure: (i) the leaves

were sampled and weighed immediately to obtain the fresh weight (FW);

(ii) the leaves were immersed in distilled water in darkness for 24 h to

obtain the saturated weight (SW); (iii) the leaves were dried in an oven at

80�C for 48 h to obtain the dry weight (DW); (iv) the leaf RWC was calcu-

lated: RWC (%) =(FW � DW)/(SW � DW) 3 100.

Leaf RELwasmeasured using the following procedure: (i) the leaf samples

were cut into small pieces and immersed in tubes filled with distilled water

at 25�C for 24 h; (ii) the conductivity (RL1) was measured using a conduc-

tivity meter (Model DDSIIA, Shanghai Leici Instrument, Shanghai, China);

(iii) the tubes were placed in boiling water for 20 min and cooled naturally

to room temperature; (iv) the conductivity (EL2) was measured; (v) REL

was calculated: REL (%) = EL1/EL2 3 100.

Biparental QTL Mapping

The QTL mapping population containing 192 RILs was derived from a

cross between the upland rice variety IRAT 109 and the lowland rice vari-

ety Zhenshan 97 (Zou et al., 2005). The genotypic data for this population

were provided by Shanghai Agrobiological Gene Center. The linkage map

is 1567 centimorgans in length and contains 2499 bins, with 0.63 cM per

bin on average. The RIL population, four plants per line, was phenotyped

for DR at the high-throughput phenotyping facility at Huazhong Agricul-

tural University in 2016. The drought treatment and phenotyping proced-

ure were the same as for association mapping as described above. QTL

mapping was performed using the composite interval mapping method

(Model 6: Standard Model) with WinQTLCart v2.5 with a 0.5 cM walking

speed (Wang et al., 2010). The backward regression method was

selected. The control marker number and window size were set to 5 and

10 cM, respectively, for background controls. The LOD threshold was

set to 2.5 and a two-LOD drop support interval was used for each QTL.

Drought Phenotyping in the Field

Due to the large variation in heading date among rice accessions pheno-

typedwithRAP (a big obstacle for accurate drought evaluation at the repro-

ductivestage in thefield) and the limitedareaof the facility fieldsite, only197

and 330 accessions were planted in 2011 and 2016, respectively, for

drought phenotyping in the field under a movable rain-off shelter. The ex-

periments followed a randomized complete block design with two replica-

tions and two treatments (drought and normal growth). Field cultivation

management was done following the standard protocol for middle season

rice production in central China. For each accession, 20 plants were grown

for each of the two replications. Drought stress was initiated at the early

stage of panicle development (2–3 mm in length) by stopping irrigation

and closing the shelter if raining. The field was then irrigated when 70%

of the accessions showed irreversible leaf-rolling observed in the morning.

During progressive drought stress, the number of days from the start of

drought treatment to the start of leaf rolling (‘‘days to leaf rolling’’ for short)

and the number of days from the start of leaf rolling to irreversible leaf rolling

in the morning (‘‘days during leaf rolling’’ for short) were recorded for each

accession in 2011. The grains in each plot were harvested and weighed to

calculate the relative yield (stress/non-stress) in 2011 and 2016. GWAS of

the traits in the field was performed as described above.

Phenomics Database

All images, image processing algorithms for i-traits, and phenotypic

data can be downloaded from our phenomics database: http://

plantphenomics.hzau.edu.cn/search_en.action.
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