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ABSTRACT

Sincewhole-genome sequencing ofmany crops has been achieved, crop functional genomics studies have

stepped into the big-data and high-throughput era. However, acquisition of large-scale phenotypic data

has become one of themajor bottlenecks hindering crop breeding and functional genomics studies. Never-

theless, recent technological advances provide us potential solutions to relieve this bottleneck and to

explore advanced methods for large-scale phenotyping data acquisition and processing in the coming

years. In this article, we review the major progress on high-throughput phenotyping in controlled environ-

ments and field conditions as well as its use for post-harvest yield and quality assessment in the past

decades. We then discuss the latest multi-omics research combining high-throughput phenotyping with

genetic studies. Finally, we propose some conceptual challenges and provide our perspectives on how

to bridge the phenotype–genotype gap. It is no double that accurate high-throughput phenotyping will

accelerate plant genetic improvements and promote the next green revolution in crop breeding.
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INTRODUCTION

The term ‘‘phenotype’’, which comes from the Greek phainein

and typos (meaning show and type, respectively), was character-

ized by Wilhelm Johannsen in 1911: ‘‘all types of organisms can

be distinguished by direct inspection or with finer methods of

measurement or description’’ (Johannsen, 1911). In 1949, as

genome was defined as the material basis of the genotype,

the term ‘‘phenome’’ was first defined as the sum total of

extragenic, non-autoreproductive portions of the cell and repre-

sented the set of phenotypes (Davis, 1949). In the 1990s, in the

context of the study of complex human disease and as the key

complement of genomics, a new discipline, phenomics,

emerged with the aim of bridging the gap between genes

and clinical endpoints (Schork, 1997). In 2010, Houle et al.

(2010) defined phenomics as the acquisition of high-
Mo
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dimensional phenotypic data on an organism-wide scale. In the

field of plant science, Fiorani and Schurr (2013) referred to plant

phenotyping as the set of methodologies and protocols

used to accurately measure plant growth, architecture, and

composition at different scales. In addition, we prefer to define

crop phenomics as the multidisciplinary study of high-

throughput accurate acquisition and analysis of multidimensional

phenotypes on an organism-wide scale through crop

development.

Next-generation sequencing technology has greatly accelerated

progress in functional genomics (Huang et al., 2010; Werner,
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2010; Li et al., 2018), allowing quantitative trait locus (QTL)

mapping and genome-wide association studies (GWASs) (Xiao

et al., 2017) to become powerful tools for elucidating the

genetic architecture of complex traits (Atwell et al., 2010;

Huang et al., 2010; Tian et al., 2011; Wang et al., 2018a; Zhang

et al., 2019a), and many genes governing important agronomic

traits have been identified (Zuo and Li, 2014; Yao et al., 2018;

Fernie and Yan, 2019; Shi et al., 2019). For example, before

2000, only approximately 130 genes had been cloned in

rice. By the end of 2017, more than 3000 genes were

well characterized through various traditional phenotypic

approaches (Yao et al., 2018). However, phenotypic data

acquisition is still a bottleneck restricting crop breeding and

functional genomics studies (Deery et al., 2016). Traditional

crop phenotyping methods are labor intensive, time consuming,

subjective, and frequently destructive to plants (Furbank and

Tester, 2011; Chen et al., 2014). The technological advances

have, in general, lagged far behind the developments of other

‘‘omic’’ technologies and tend to be fragmentary.

In recent years, advanced sensor, machine vision, and automa-

tion technology has been widely adopted across the agri-food in-

dustry to augment automation and promote efficiency, with appli-

cations ranging from product quality assessment to sorting and

packaging (Ruiz-Garcia et al., 2009). In medicine, noninvasive

clinical screening and assessment methods have proven their

value over many years and are increasingly being developed

for physiological measurements. The attractiveness of this

package of technologies is its potential for scaling and the

promise that it could begin to match the other omics. The

fact of adapting such technologies in farming is that the

production-grade processes are often satisfied with binary deci-

sions, delivered rapidly, and discarded immediately after use,

although vision-guided robotics is developing rapidly and should

allow the technology to be applied in less constrained environ-

ments, including on the farm (Pieruschka and Schurr, 2019). In

addition, biomedical procedures can tolerate a substantially

higher cost threshold than agriculture and already implement

diverse highly sophisticated sensors, ranging from computed

tomography (CT) imaging to targeted metabolic sensors.

Advances in a range of technologies, from sensors to information

technology (IT) and data extraction, combined with systems inte-

gration and decreasing costs, means that morphology and phys-

iology can be assessed non-destructively and repeatedly across

whole populations and throughout development. However, the

technologies are still under active development. Over the past

decade, the question of why and how to measure all of genomics

has been investigated in depth, and now technological advances

will allow us to answer the question of why and how to measure

whole-plant phenotypes in the coming decades (Houle et al.,

2010). In this article, we review the major progress on high-

throughput phenotyping in controlled environments and field

conditions as well as it use for post-harvest yield and quality

assessment in past decades (Figure 1). We analyze and discuss

the latest multiomics studies combining high-throughput pheno-

typing with genetic studies. Finally, with reference to the survey

and database of the International Plant Phenotyping Network

(IPPN), we discuss the current challenges in crop phenomics

and provide our perspectives on crop phenotyping-related

research.
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DYNAMIC PLANT PHENOTYPING

Multiple genes interact with the multiple environments (GxE)

across the life cycle to affect performance (Orgogozo et al.,

2015). The effect of the environment on plants can be particularly

pronounced because their static lifestyle precludes the use

of the avoidance strategies commonly used by animals.

Sensor technologies now enable the detailed recording of the

environmental history of plants as well as the dynamic response

of plants or crops. Since the whole-genome sequencing of

Arabidopsis and many other crops (https://genomevolution.org/

wiki/index.php/Sequenced_plant_genomes) has been achieved

(Kersey, 2019), the next goal is to describe the whole

phenotypes of important crops and to dissect the key functional

loci (genes or QTLs) and better understand the crop genetic

architectures. High-throughput phenotyping platforms will play a

key role in achieving this goal. In this section, we discuss high-

throughput shoot phenotyping for Arabidopsis and larger crops

and root phenotyping in the laboratory environment (Table 1).
High-Throughput and Integrated Shoot Phenotyping:
Unlimited Expansion in Model Plants

Over the past few decades, many intelligent and high-throughput

phenotyping platforms have been developed for screening small

plants (such asArabidopsis and rosette species) and larger plants

(such as rice and maize). Arabidopsis thaliana is widely used as a

model plant because of its rapid life cycle, relatively small

genome, and wide geographic range (Kaul et al., 2000), as well

as its close relationship to crops in the Brassicaceae family.

Automated and large-scale phenotyping under controlled envi-

ronmental conditions is particularly attractive in such a species

for forward genetics, reverse genetics, and quantitative genetics.

One of the first automated red-green-blue (RGB) imaging and

weighing systems, PHENOPSIS (2003) was developed to under-

stand Arabidopsis responses to water deficit (Granier et al.,

2006), but it lacked integrated data management and

had relatively simple environmental controls. In 2011, the

PHENOPSIS platforms and growth chambers were extended,

and a database, PHENOPSIS DB, was developed to store

hundreds of gigabytes of images and metadata and to

provide data and image analysis modules; this database served

as a template for other groups to develop a similar data

management system (Fabre et al., 2011). GROWSCREEN was

established to quantify the dynamics of seedling growth

acclimation (total leaf area, relative growth rate, and root area)

under altered light conditions (Walter et al., 2007). In addition,

based on the linear displacement stages, the color imaging

device of GROWSCREEN could be replaced with a chlorophyll

fluorescence imaging system, GROWSCREEN FLUORO, which

allowed the simultaneous phenotyping of leaf growth and

chlorophyll fluorescence in Arabidopsis thaliana and Nicotiana

tabacum with a throughput of approximately 60 plants per hour

(Jansen et al., 2009). The relatively limited capacity of

GROWSCREEN, 200–500 plants, combined with the micro-

environmental heterogeneity across the platform, can reduce

the mapping power for QTL analyses or GWAS.

A large-scale phenotyping platform, Phenoscope, was de-

signed to obtain shoot growth and water content information

https://genomevolution.org/wiki/index.php/Sequenced_plant_genomes
https://genomevolution.org/wiki/index.php/Sequenced_plant_genomes


Figure 1. Schematic Overview of Phenotyping Platforms and across Different Scales.
Organ/tissue (A), shoot (B), root (C), ground-base (D), and UAV (E) to yield/quality (F) phenotyping and exemplification of different spectra used in crop

phenotyping (G).
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for 735 pots, compensating for environmental heterogeneity by

continuously rotating the 735 pots across the platform (Tisné

et al., 2013). Phenovator utilized a high-speed x–y moving rail

system to move a monochrome camera with eight specific

band-pass filters above a platform carrying up to 1440 plants

to obtain data on photosynthesis (FPSII, light-use efficiency of

photosystem II electron transport) and plant growth traits

(projected leaf area accumulation) (Flood et al., 2016). This

configuration had a high acquisition speed, with the collection

of leaf area in 20 min and PSII efficiency in less than an hour.

Instead of moving sensors, the commercially available system

PlantScreen transported trays (20 pots per tray) on conveyor
Mo
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belts from the growing area to a dark acclimation chamber

and chlorophyll fluorescence (ChIF) and RGB imaging

cabinets, with automatic weighing and watering (Awlia et al.,

2016). The results showed that some photosynthetic

parameters, such as FV/Fm, were robust in reflecting severe

salt stress, while other parameters (FNPQ, qP, and FP)

reflected early salt stress. However, the influence of the

movement of potted plants and environmental variation (e.g.,

wind, temperature, and other microclimate; Brien et al., 2013)

in a greenhouse may affect chlorophyll fluorescence

parameter measurements (Haworth et al., 2018) and should be

further investigated.
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Applications Platforms Advantages Limitations References

Shoot phenotyping for

Arabidopsis in the
laboratory

PHENOPSIS (DB); GROWSCREEN

(FLUORO); Phenoscope;
Phenovator; PlantScreen

Relatively affordable, rapid, and

automatic measurements for large
populations

Not suitable for larger crops Fabre et al., 2011; Jansen et al.,

2009; Tisné et al., 2013; Flood et al.,
2016; Awlia et al., 2016

Shoot phenotyping for

crops in the laboratory

TraitMill; Scanalyzer3D;

PHENOARCH; HRPF

Dynamic and automatic obtain shoot

growth, biomass, and lots of
information for large populations

Costly; requires multidisciplinary

experts to maintain and update

Reuzeau et al., 2005; Hairmansis

et al., 2014; Brichet et al., 2017; Yang
et al., 2014

PhenoBox Affordable; easy to maintain Labor intensive for large screening Czedik-Eysenberg et al., 2018

Root phenotyping in the

laboratory

PlaRoM; Rhizoslides; Rhizoponics;

RADIX; RhizoTubes

Affordable; obtain 2D root system

architectures

Root growth in transparent media Yazdanbakhsh and Fisahn, 2009;

Le Marie et al., 2014; Mathieu et al.,

2015; Le Marie et al., 2016;
Jeudy et al., 2016

GiARoots RootReader3D Affordable; obtain 3D root system
architectures

Root growth in transparent media Galkovskyi et al., 2012; Clark et al.,
2011

GROWSCREEN-Rhizo High-throughput to obtain shoot and

root traits in soil-filled rhizotrons

Root growth is limited in 2D

rhizotrons (rhizobox)

Nagel et al., 2012

MRI–PET; PET–CT; MRI–CT Obtain 3D root system architectures

in soil-filled tubes

Costly; time consuming; lack of

specialized prototype for crop study

Jahnke et al., 2009; Garbout et al.,

2011; Metzner et al., 2015

Ground-based

phenotyping

in the field

CPRS, a fixed phenotyping tower Easy to install and maintain Limited crop information in fixed

areas was obtained

Fukatsu et al., 2012

Field Scanalyzer, a rail-based gantry

phenotyping system

Integration of various optical

sensors; high image resolution

Costly; limited image area; variable

ambient light

Sadeghi-Tehran et al., 2017

BreedVision, a self-propelled tractor

equipped with multiple sensors

mounted in a mobile dark chamber

Integration of various optical

sensors; stable imaging conditions;

non-restriction of image area

Restricted by wet soil and weather

conditions (rainy and strong breeze)

Busemeyer et al., 2013a

Remote sensing in the

field

Drones or UAVs equipped with

multiple sensors

Integration of various sensors; non-

restriction of imaging area; rapid

measurements (crop growth, yield,

stress response, etc.); flexible to
install and use

Cannot obtain information below the

canopy; strict operating and local

flight laws should be noted to ensure

flight safety

Maes and Steppe, 2019

Table 1. Examples of High-Throughput Phenotyping Applied in Arabidopsis or Crops.
(Continued on next page)
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Applications Platforms Advantages Limitations References

Pocket phenotyping PocketPlant3D, a smartphone

equipped with APP to measure

maize canopy and leaf traits

Affordable; flexible to use; easy to

popularize

Limited traits and single function;

lack of robust models to face

complex conditions in field

Confalonieri et al., 2017

Post-harvest
phenotyping

Seed Evaluation Accelerator (SEA) Automatic threshing rice panicles

and rapid measurements of yield-

related traits

Cannot obtain 3D grain traits and

panicle traits

Duan et al., 2011

P-TRAP; PANorama Quantify both rice panicle traits and

grain traits; no need for threshing

Need to manually separate panicle

branches; cannot obtain 3D grain

traits

AL-Tam et al., 2013; Crowell et al.,

2014

PhenoSeeder Extract 3D traits from individual

seeds with high accuracy

Low measuring speed; need for

threshing

Jahnke et al., 2016

X-ray CT Extract 3D cereal grain traits and

spike traits without threshing

Costly; time consuming; need to

develop a bespoke image analysis

pipeline for new species

Hughes et al., 2017 Hughes et al.,

2019

Hyperspectral imaging Infer protein content, and other

physiological or biochemical

information

Costly; need bespoke image analysis

and update model for new species,

new physiological or biochemical

indicators

Sun et al., 2019

Table 1. Continued
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High-Throughput Phenotyping in Crop Science:
Multidisciplinary Teamwork

Some of the first developments were aimed at the industrial-scale

assessment of genetically modified crops. CropDesign (Belgium)

developed TraitMill, comprising proprietary bioinformatics tools,

a high-throughput gene engineering system, plant transformation

methods, and a high-throughput phenotyping platform, which

was used to determine morphometric traits (aboveground

biomass, plant morphology, plant color) that might be related

to yield (Reuzeau et al., 2005). Unfortunately, the details

of TraitMill, the experimental design, and outcomes were

proprietary. LemnaTec GmbH (Germany) developed the

Scanalyzer3D platform and installed versions around the

world. The Plant Accelerator (Australian Plant Phenomics

Facility, University of Adelaide, Adelaide, Australia), fitted with

computer-controlled conveyor systems, automated weighing–

watering devices, and imaging stations (RGB, near-infrared

[NIR], fluorescence, and hyperspectral imaging), has a capacity

of 2400 plants and has been used to assess the salinity tolerance

of rice (Hairmansis et al., 2014), nitrogen/water deficiency in

crops (Neilson et al., 2015), and the salinity tolerance of

chickpea (Atieno et al., 2017). In addition, the total plant

biomass is estimated from RGB images using the projected

shoot area in three different view images and linear models,

and the predication accuracy of the model can be improved by

adding additional factors such as the growth date (Golzarian

et al., 2011), or more structural or physiological features in a

more sophisticated model (Chen et al., 2018). However, the

commercial software of Scanalyzer3D, LenmanGrid, with its

built-in algorithms, is not open source and cannot be easily modi-

fied to extract more traits. Therefore, its application to new

species or experimental scenarios is often unsatisfactory

(Hartmann et al., 2011).

To alleviate this problem, the Leibniz Institute of Plant Genetics

and Crop Plant Research developed HTPheno, a plugin for Im-

ageJ, and other open-source image-processing software to

extract standard traits from color images, such as plant height,

width, and projected area (Hartmann et al., 2011). The Java-

based open-source Integrated Analysis Platform (IAP) with

broader functionalities and the flexibility to integrate third-party

algorithms (Klukas et al., 2014), supports additional sensor

types (fluorescence, near-infrared, infrared) and a broader range

of species (maize and Arabidopsis) and facilitates data manage-

ment. IAP was used to extract features from images and model-

derived parameters to determine the drought response (DR) of

barley (Chen et al., 2014) and screen the genetic variation of

growth dynamics in maize in combination with GWASs (Muraya

et al., 2017).

The Bellwether Phenotyping Platform installed a Scanalyzer3D

system within a climate-controlled growth facility at the Donald

Danforth Plant Science Center (St. Louis, MO, USA). They devel-

oped PlantCV, platform-independent software based on open-

source libraries (OpenCV, NumPy, and MatPlotLib) to process

RGB, fluorescent, and NIR images and quantify different tempo-

ral responses towater availability inSetaria (Fahlgren et al., 2015).

Interestingly, the INRA group (PhenoArch Phenotyping Platform,

INRA, Montpellier, France) developed an automatic procedure to
192 Molecular Plant 13, 187–214, February 2020 ª The Author 2020.
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monitor silk growth dynamics in maize, by modifying two succes-

sive imaging cabins—one cabin to determine the spatial coordi-

nates of potential ears and the second to inform a robotic

camera—thereby providing clearer images of maize ears and

calculating silk traits across time (Brichet et al., 2017). This

illustrates the need for continued multidisciplinary development

of hardware and software according to user requirements.

A multidisciplinary team from Huazhong Agricultural University

and Huazhong University of Science and Technology (Wuhan,

China) developed the High-throughput Rice Phenotyping Facility

(HRPF, Figure 1), incorporating color imaging, X-ray CT,

automatic controls, and an image analysis pipeline that can

monitor at least 15 agronomic traits in populations of up to

1920 rice plants, with a total greenhouse capacity of 5472

(Yang et al., 2014). Moreover, some image-based traits (i-traits)

that are difficult to assess manually, such as leaf rolling and

stay-green properties of drought-tolerant rice, can also be quan-

tified (Duan et al., 2018). Together with GWASs and 51 i-traits, the

HRPF can dissect the complex DR traits into heritable and simple

i-traits and discover new genes for DR (Guo et al., 2018a). In

addition, with minor adjustments of the image analysis pipeline,

the HRPF can be extended to phenotype other species,

including 3D wheat plant architecture (Fang et al., 2016), the

leaf traits of rape seedlings (Xiong et al., 2017), and the genetic

architecture of variation in maize growth (Zhang et al., 2017).

However, the establishment of high-throughput conveyor-based

phenotyping systems is costly and time consuming and requires

in-depth knowledge of engineering and computational sciences

to maintain function and flexibility. The unit cost depends on

the throughput, so the implementation of such systems can

only be justified at major research centers or companies.

To provide cheaper phenotyping solutions, Czedik-Eysenberg

et al. (2018) developed PhenoBox, a flexible open-hardware

and open-source phenotyping system to extract shoot traits.

Because of the low cost of materials (V3000), PhenoBox was

widely applied to study infection of model grass, salt stress,

and observation of other crops with additional sensors, such as

hyperspectral imaging sensors. To benefit more labs, it is impor-

tant to decrease the unit cost associated with high-throughput

phenotyping not only in the lab but also in the field (Hawkesford

and Lorence, 2017). Another trend is to increase the number

and quality of quantified traits, especially novel traits or those

requiring labor-intensive and destructive measurement; i.e., tiller

growth (Wu et al., 2019) or panicle development (Jhala and

Thaker, 2015) by X-ray CT.

Choosing the appropriate imaging sensors and proper imaging-

transfer mode are both vital in designing phenotyping facilities,

which depend on the different experimental objectives. In com-

parison, RGB, fluorescent, thermal, hyperspectral, and 3D imag-

ing all have their pros and cons: (1) RGB imaging (also called

visible light imaging) is cost-effective and is the most widely

used to measure plant or organ morphological traits, biomass,

and plant growth (Yang et al., 2014), but it cannot provide

physiological information. (2) Equipped with specific excitation

illumination, fluorescent imaging can reflect the physiological

signal, such as photosynthetic function and reactive oxygen

species signal (Fichman et al., 2019). (3) Thermal imaging (also

called far-infrared thermal imaging) can obtain the plant or leaf
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temperature, which is also affected by environmental conditions

(Zarco-Tejada et al., 2012). Moreover, both fluorescent

and thermal imaging cannot provide sufficient spectral

information. (4) Hyperspectral imaging can provide abundant

spectral (visible and near-infrared) and spatial information

simultaneously and can be assembled to assess disease

severity, water status, and other physiological traits. However,

the hyperspectral sensor is costly, and the processing of hyper-

spectral data (gigabyte per sample) can be complicated

(Mahlein et al., 2018). (5) Compared with 2D imaging, 3D

imaging techniques, which mainly include image-based (Fang

et al., 2016) and laser scanning-based (Paulus et al., 2014)

techniques, can generate 3D models and obtain more spatial

and volumetric traits. According to the merits of the different

imaging technologies, the current trend is to combine multiple

imaging techniques. Some studies have compared the different

imaging techniques in plant phenotyping (Fiorani and Schurr,

2013; Zhao et al., 2019).

More importantly, choosing the proper imaging-transfer mode

(plant-to-sensor or sensor-to-plant) depends on the extracted

traits, volume size of the measured species, greenhouse capac-

ity, and other factors. CropDesign, Scanalyzer3D, and HRPF are

all based on plant-to-sensor mode, which transfers the plants

to imaging stations to extract biomass, shoot growth, and plant

architectures. However, to measure certain physiological

traits (such as canopy temperature) that are susceptible to envi-

ronmental variation (air temperature and wind speed, etc.)

(Ghanem et al., 2015), moving the camera and keeping the

plants stationary would be better than transporting the plants

to the inspection chamber via the long belt conveyor. Another

example of sensor-to-plant mode is Phenodyn (Montpellier,

France; Avramova et al., 2019), which has displacement

transducers and a balance recorder for each plant, and

measures leaf elongation rate and transpiration rate with the

capacity of 500 plants in the greenhouse. In our opinion,

combining both plant-to-sensor and sensor-to-plant modes

would be interesting and have complementary advantages.
Going Underground: An Added Challenge in Plant
Phenotyping

Unlikemost animals, individual land plants live at the interface be-

tween two or more distinct media. While the shoots usually

develop in the air (and are relatively easily accessible for inspec-

tion, measurement, and sampling), the roots normally function

within the soil, limiting direct observation. Roots are crucial

organs that determine water and nutrient uptake in most crops,

directly influencing their resilience to drought as well as affecting

yield and quality.

Root system architecture (RSA) phenotyping in situ is chal-

lenging, especially in comparison with shoot phenotyping

(Atkinson et al., 2019). A wide range of solutions have been

evaluated and can provide useful information. The use of

transparent (hydroponic, aeroponic, and gel-based) growth me-

dia, such as PlaRoM, permits the use of RGB cameras to acquire

and extract growth dynamics and hair development, with a

maximum capacity of 50 seedlings (Yazdanbakhsh and Fisahn,

2009). Other systems include Rhizoslides (a paper-based root

growth and observation system) (Le Marie et al., 2014),
Mo

MOLP 8
Rhizoponics (a hydroponic rhizotron for the evaluation of the

RSA of Arabidopsis) (Mathieu et al., 2015), RADIX (a rhizoslide

platform used to screen the shoots and roots of 200 maize

plants) (Le Marie et al., 2016), and RhizoTubes (an automatic

‘‘plant-to-sensor’’ platform comprising 1200 rhizotubes to

obtain the RSA in approximately 6–8 weeks) (Jeudy et al.,

2016). In addition, several open-source image analysis

solutions evaluating the 2D RSA have been developed, including

semiautomatic software (RootTrace, French et al., 2009;,

SmartRoot, Lobet et al., 2011; RootNav, Pound et al., 2013)

and fully automatic software (EZ-Root-VIS, Shahzad et al., 2018).

Iyer-Pascuzzi et al. (2010) developed a 3D RSA imaging platform

utilizing a gel-based growth cylinder to obtain 16 root traits. Other

3D image reconstruction and image analysis pipelines include

GiARoots (Galkovskyi et al., 2012) and RootReader3D (Clark

et al., 2011). To obtain the RSA similar to that observed in the

field, Pineros et al. (2016) developed a plastic mesh vertical

tower system to maintain the 3D root architecture and achieve

3D imaging in a hydroponic growth cylinder (Pineros et al., 2016).

However, it is not always apparent how results obtained from

transparent media apply to normal growing conditions in the

field. An intelligent mechanized root phenotyping platform,

GROWSCREEN-Rhizo, was developed to image shoots and the

roots simultaneously in transparent soil-filled rhizotrons. The

throughput was 60 rhizotrons per hour out of a total capacity of

72 rhizotrons (Nagel et al., 2012). Moreover, additional sensors

(i.e., hyperspectral) were integrated into this phenotyping

system with the potential to dynamically reflect root chemical

components, such as root water content and lignin change

(Bodner et al., 2018).

X-ray CT, a 3D structural imaging application, can be used to

visualize the inner 3D volume according to the differences in

the X-ray attenuation of different materials, such as roots and

soil. The first CT scanner (Cormack, 1963) was quickly followed

by a clinically useful version (Hounsfield, 1976), for which the

inventors received the 1979 Nobel Prize in Physiology and

Medicine. The open-source software RooTrak was developed

by the CPIB (Centre of Plant Integrative Biology, University of

Nottingham) group (Mairhofer et al., 2012, 2013) to exploit the

differential X-ray attenuation between soil and roots and

reconstruct the RSA in 3D. Multiple interacting root systems

could also be extracted and separately analyzed based on a

modified RooTrak (Mairhofer et al., 2015).

In addition, some issues regarding the use of CT to scan roots

must be noted: (1) to ensure the better contrast of X-ray attenua-

tion between soil and roots, soil preparation to maintain homoge-

neity, including sieving and drip, is the first key step, and the RSA

is also influenced by the soil type and soil compaction (Rogers

et al., 2016); (2) CT scanning often involves trade-offs, for

instance, the scanning volume and resolution both increase the

scanning time so larger pots at high resolution will limit the num-

ber of samples or frequency of data acquisition (Mairhofer et al.,

2012); (3) although several studies have shown that X-ray CT with

a low dose of radiation (<30 Gy) had no impact on plant growth or

soil microbial populations, the effect of X-ray radiation with high

energy and high-throughput scan times should be further investi-

gated (Zappala et al., 2013).
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Other alternative approaches for recovering 3D RSA from soil

included magnetic resonance imaging (MRI), positron emission

tomography (PET), and a combination of both. Through the imag-

ing of the absorption and re-emission of electromagnetic radia-

tion from nuclei in a magnetic field, MRI can be used for structural

imaging (such as root architecture) or functional imaging (water

distribution in plant tissues) (Atkinson et al., 2019). The Julich

Plant Phenotyping Center (Julich, Germany) utilized MRI to

dynamically evaluate root morphological changes during

Cercospora beticola infestation (Schmittgen et al., 2015), and

used image analysis software (NMRooting) to quantify root

traits (such as root length, mass, angle, diameter, tip number,

and spatial distribution) from 3D MRI data with a maximum

measurement capacity of 18 pots per day (van Dusschoten

et al., 2016). The group from Aarhus University used medical

PET (functional imaging that detects positron-emitting radionu-

clides) to nondestructively scan plant roots down to 82 mm

deep and dynamically screen carbon (photoassimilate) transpor-

tation over a prolonged time period (Garbout et al., 2011).

The techniques of CT, MRI, and PET all have their advantages

and limitations: (1) CT tends to provide more detail from small

pots (such as pots with a diameter of 34 mm) for which higher-

resolution scanning is possible, but for larger pot diameters

(>81 mm), MRI was found to detect more roots than CT

(Metzner et al., 2015). (2) CT and MRI have higher spatial

resolution (%30 mm3) than PET (approximately 1.4 mm), but

PET, with its high g-radiation, can provide high contrast

between roots and soil (Jahnke et al., 2009). (3) Signal

deterioration due to soil structure and water content is lower for

PET than for MRI and CT, and a high soil water content affects

CT more than MRI (Jahnke et al., 2009). In addition, soil with

high sand and low clay (or silt) content yielded better image

quality for both MRI and CT (Pflugfelder et al., 2017). (4) Finally,

the time requirements for both PET scanning (R60 min) and

MRI scanning (approximately 40–60 min) are generally greater

than those for CT, which means that it would be difficult to use

MRI and PET for phenotyping populations on a large scale, as

required for genetic studies (Jahnke et al., 2009; Metzner et al.,

2015). Thus, because of their different merits, the use of a

combination of these tomography techniques, such as MRI–

PET (Jahnke et al., 2009), PET–CT (Garbout et al., 2011), and

MRI–CT (Metzner et al., 2015), is popular not only in medical

imaging but also in root phenotyping for addressing focused

biological questions. Currently, many important functional

genes influencing RSA likely remain undiscovered due to the

bottleneck associated with root phenotyping (Wing et al., 2018),

necessitating the development of breakthrough technologies

for belowground imaging in the future.
FAST DEVELOPMENT OF PHENOTYPING
TECHNIQUES IN THE FIELD

The outdoor environment, where the vast majority of crops are

grown, is much more variable than the laboratory environment.

Soil structure can vary within and among fields, and even small

differences in topology and aspect can alter the wind speed,

the effect of solar radiation, evaporation rates, and so on. Field

crop breeding takes such variation into account through repli-

cated multisite trials, but the application of appropriate pheno-
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typing technologies remains a limitation for future genetic studies

and breeding advances (Araus and Cairns, 2014). Field

phenotyping can be broadly split into technological groups

based on the sensor platform: ground-based, unmanned aerial

vehicle (UAV), and handheld phenotyping (Table 1), which are

discussed in the following sections.
Ground-Based Phenotyping: High Diversity of
Phenotyping Solutions

Sensor platforms can be either fixed or mobile. Towers and other

fixed platforms are easy to construct andmaintain and have been

used to record growth stages and monitor insect pests. For

example, digital cameras attached to a fixed phenotyping tower

(Crop Phenology Recording System [CPRS]) were used to

monitor rice growth and the occurrence of the rice bug

(Sakamoto et al., 2011; Fukatsu et al., 2012). Shibayama et al.

(2015a) used two digital cameras at a height of 12 m above a

rice field to evaluate the nitrogen content and leaf area index of

paddy rice (Shibayama et al., 2015b). Zhou et al. (2017)

developed a scalable and cost-effective field phenotyping plat-

form (CropQuant), a web-based control system (CropMonitor),

and a high-throughput trait analysis pipeline to measure dynamic

crop growth, vegetative greenness, and plot orientation. The

advantage of the use of the fixed phenotyping tower was that it

was easy to install and maintain, whereas the disadvantage

was that limited crop information in fixed areas was obtained,

and costs for large-scale experiments increase in a near-linear

fashion. A smart solution was an ambient sensor cloud system,

which employed open-source sensors and a free cloud data

service; this achieve long-time observations of individual plants

(Hirafuji et al., 2011).

Rothamsted Research established a rail-based gantry system for

field phenotyping, the Field Scanalyzer (Sadeghi-Tehran et al.,

2017; Virlet et al., 2017), measuring 125 m (length) 3 15 m

(width) 3 6 m (height) and equipped with an �300 kg sensor

array, including a visible camera, a 3D laser scanner, a thermal

infrared camera, a visible to near-infrared (VNIR) hyperspectral

camera, a four-channel amplified radiometer, a chlorophyll fluo-

rescence sensor, and a CO2 sensor. The acquisition of data

from all sensors took approximately 7 min for one plot (1.5 m2).

This platform can be used to produce a detailed description

of crop canopy development through all life stages, for example,

to determine wheat ear emergence and flowering times (Sadeghi-

Tehran et al., 2017). Similarly, with an integrated LiDAR sensor,

RGB camera, thermal camera, and hyperspectral imager in a

mobile gantry system, Guo et al. (2018b) developed a high-

throughput crop phenotyping platform (Crop3D) to measure 3D

plant/leaf architectures and leaf temperature. However, there

are two challenges that should be discussed: (1) variable

ambient light leads to challenges, which are solved in part by

nighttime imaging or the addition of an on-field reflectance

standard (Virlet et al., 2017). (2) It is a challenge to effectively

analyze terabytes of hyperspectral images and laser-scanned

images (Vadez et al., 2015) as well as interpret temporal series

of thermal, multi- or hyperspectral-based features in changing

environments (Virlet et al., 2017). In addition, such large rail-

based systems covering a limited area (e.g., 0.12 ha in the case

of Rothamsted Research) are also expensive in terms of both

construction and maintenance.
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Sensors mounted on manually operated carts or self-propelled

tractors overcome many of these issues. A cart carrying multiple

sensors, including an ultrasonic sensor, a normalized difference

vegetation index (NDVI) sensor, a thermal infrared radiometer, a

portable spectrometer, an RGB camera, and a proximity sensor,

has been used to obtained soybean and wheat canopy traits,

including height, NDVI, temperature, reflectance spectra, and

RGB imagery (Bai et al., 2016). To obtain 3D information and

measure plant height, Wang et al. (2018b) built a ground-based

high-throughput plant phenotyping system (HTPP) with various

sensing technologies, which included an ultrasonic sensor,

a LiDAR-Lite v2 sensor, a Kinect camera, and four digital

single-lens reflex cameras. Stereo cameras, time-of-flight depth

sensors, and infrared cameras have been used to evaluate indi-

vidual plant architecture traits (Young et al., 2018), while a time

of flight (TOF)-based 3D vision sensor provided the automated

measurement of interplant distance (Nakarmi and Tang, 2012).

However, most imaging platforms in the open field are suscepti-

ble to variable environmental conditions, such as light intensity.

The BreedVision system solves this problem simply by excluding

ambient light and imaging within a mobile dark chamber

(Busemeyer et al., 2013a). Because it is equipped with multiple

sensors (3D time-of-flight camera, laser distance sensors, hyper-

spectral imaging, RGB sensors, and light curtain imaging) and

specific trait calibrations, BreedVision can nondestructively mea-

sure plant traits, including plant height, tiller density, grain yield,

moisture content, leaf color, lodging, and dry biomass, at an

operating speed of 0.5 ms�1. Remarkably, equipped with a pair

of linear light barriers (one emitter and the other a receiver), light

curtain imaging could be used to measure plant height, plant

architecture, and biomass without the influence of indoor or field

illumination conditions (Busemeyer et al., 2013a; Fanourakis

et al., 2014). However, vehicle-based platforms have some limita-

tions; they are restricted by soil and weather conditions and, in

some cases, by topology. Specific crops, such as paddy rice,

require specialized vehicles.
Remote Sensing with UAV: The Further You Look, the
More You See

Drones (or UAVs) provide a flexible platform, quickly acquiring

data over large areas and potentially providing high spatial reso-

lution images (�1 mm per pixel). Some advanced IT techniques,

such as deep learning (DL), can handle of millions of remote

sensing images with high accuracy and high speed (Bauer

et al., 2019). Thus, remote sensing has been widely used to

monitor drought stress response, assess nutrient status and

growth, detect weeds and pathogens, predict yield (Maes and

Steppe, 2019), and identify QTLs (Wang et al., 2019).

Canopy color and texture features obtained by UAV platforms

(Yue et al., 2019) at high spatial and temporal resolution

facilitate phenotyping tasks, since the improvement of image

quality and quantity provides detailed information for feature

mining and analysis. Accordingly, high-resolution UAV imagery

has been adopted for various phenotyping purposes, such as

leaf area index estimation (Yao et al., 2017), wheat ear

identification (Madec et al., 2019), weed detection (Hung et al.,

2014), and seeding performance evaluation in rapeseed (Zhao

et al., 2018). In addition, researchers have paid great attention
Mo
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to optimal resolution determination. For example, a recent

study suggested that an optimal resolution of 0.3 mm allowed

for high-throughput phenotyping in the field (Madec et al.,

2019). Because of its combination of high spatial and temporal

resolution (Burkart et al., 2018), UAV-based phenotyping opens

new possibilities in field research.

For plant geometric morphometric analysis, such as that pertain-

ing to plant height and aboveground biomass, 3D canopy

modeling provides better estimates than vegetation indices

(VIs) (Maimaitijiang et al., 2019). With the development of

photogrammetric techniques, multiview stereopsis, and

computer vision approaches, such as structure from motion

(SFM), UAVs have emerged as a promising platform for

obtaining 3D plant canopy structure information (Bendig et al.,

2014; Hassan et al., 2019). SFM algorithms produce

geometrically precise 3D point clouds by matching feature

points from 2D images obtained by RGB sensors. SFM is

effective for estimating plant height and biomass (Bendig et al.,

2014; Malambo et al., 2018), but the penetration capability of

photogrammetric techniques is limited compared with that of

LiDAR. SFM can produce point clouds at the subpixel level with

similar accuracy and quality to LiDAR (Hassan et al., 2019).

Moreover, there is a strong correlation between digital surface

model (DSM, obtained by SFM algorithms using UAV data) and

LiDAR estimations of plant height (Madec et al., 2017; Jimenez-

Berni et al., 2018), and the SFM-UAV-basedmethod is less costly

and more flexible (Jimenez-Berni et al., 2018).

Different imaging sensors mounted on UAVs can be used to cap-

ture spectral information regarding visible or NIR bands for crop

nutritional diagnosis and monitoring various types of stress

(Figure1).Aconsumer-gradeRGBcameracanbeused togenerate

a range of RGB VIs, which have been found to have good perfor-

mance in the assessment of stressconditions, suchas lownitrogen

(Elazab et al., 2016) and biotic stress (Vergara-Diaz et al., 2015).

In addition, the NIR or IR bands can provide more spectral

information, which improves the measuring accuracy of crop

growth monitoring. Multispectral cameras can respond to

spectral information from red edge and NIR bands and have been

utilized for chlorophyll-based diagnosis (Deng et al., 2018) and

water stress monitoring (Zarco-Tejada et al., 2012). However,

their spectral resolution is limited by the number of lenses on the

sensors. Hyperspectral cameras cover a commonly used

spectral region (400–1000 nm) for crop monitoring and can be

used for assessing the leaf carotenoid content (Zarco-Tejada

et al., 2013), nitrogen concentration (Zheng et al., 2016), heat and

drought stress (Trachsel et al., 2019), and so on. This type of

sensor can capture the most comprehensive spectral

information, but it is expensive, and data processing may be

relatively complicated. In addition to imaging sensors, a VNIR

nonimaging spectrometer was even mounted on a UAV to collect

accurate spectral reflectance signals (Garzonio et al., 2017). In

this way, more detailed spectral information could be obtained

rapidly. There are some reviews available on UAV spectral

remote sensing technologies (Aasen et al., 2018; Maes and

Steppe, 2019) and UAV-based hyperspectral data processing

and applications in agriculture (Adão et al., 2017).

Remote sensing with UAVs has shown great potential for high-

throughput phenotyping, which will enhance work in crop
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functional genomics and crop breeding. However, some restric-

tions related to the use of UAVs should be addressed: (1) the fly

time and the load capacity are limited; (2) local flight laws and reg-

ulations may be a constraint; (3) strict requirements for operating

technicians should be implemented to ensure flight safety; (4) a

low flight altitude will provide original images with higher quality

but can also cause changes to the leaf architecture and physi-

ology due to the strong wind produced by the UAV. Moreover,

lower flights will result in longer flight time, which will make it diffi-

cult to screen large populations with low-altitude drone flights.

Thus, reasonable flight altitudes and other camera settings

associated with different phenotyping goals should be further

investigated.
Pocket Phenotyping: The Flexible Future

Physiologists have long used specialized handheld portable tools

to measure a range of functions (Kim et al., 2016). Many such

instruments are necessarily complex, requiring training and

good attention to detail to obtain useful data. The challenges

and opportunities related to portable phenotyping include (1)

decreasing the level of expertise required and integral data

standardization (such as color calibration and smart user

guides); (2) integrating multiple sensors into one portable

device with corresponding software for data analysis; and (3)

exploiting the 5th generation mobile network and artificial

intelligence techniques, such as DL, could build robust model

to face complex conditions in the field. Next-generation ‘‘pocket’’

or wearable phenotyping tools could provide the disruptive tech-

nology that will profoundly change and accelerate phenotyping.

The rapid development of smartphones with high-resolution RGB

cameras and powerful computing has led to the creation of appli-

cations with ever-increasing utility. In addition, aspects of mobile

phone technology have been incorporated into other bespoke

portable instruments, increasing the range of optical and other

sensors and enhancing the connectivity and portability of tradi-

tional phenotyping equipment. This is an emerging and rapidly

evolving area, so we only provide a few examples to illustrate

the possibilities. PocketPlant3D measures maize canopy struc-

ture (Confalonieri et al., 2017); the smartphone is moved

parallel with the leaf lamina from base to tip, and all the leaves

can be scanned to obtain the whole leaf architecture. A

machine learning-based app can diagnose Cercospora leaf

spot and other sugar beet leaf diseases better than experts

(Hallau et al., 2018). A smartphone application for Android

devices, vitisBerry, can quantify the number of grapevine

berries (Aquino et al., 2018).
POST-HARVEST PHENOTYPING:
APPLICATION IN RESEARCH

The harvested part of the crop is, generally, the most immediately

economically relevant, and mechanized systems often already

exist for handling and assessing its yield or quality, both in the

harvesting process or post-harvest. Like the various sensors

installed in the tractors discussed in the section on Ground-

Based Phenotyping, during the process of harvesting, the

sensors and global positioning system (GPS) could also be inte-

grated in the (combine) harvester to monitor, for example, the

yield of blueberries (Farooque et al., 2013), grain yield (Li et al.,
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2016), and cotton yield (Pelletier et al., 2019). While several

smart farming machines (e.g., advanced farming system, AFS,

Case IH, US) have been commercialized in the harvest process,

we focus on post-harvest phenotyping in this section.

Quality assessment in the seed and milling industry uses imaging

technologies that readily lend themselves to research applica-

tions. The relatively simple integration of 2D image capture,

feature extraction, and data export have streamlined seed

phenotyping to allow a wide, cost-effective survey of wheat

germplasm, revealing the genetic architecture underlying grain

shape and size variation in bread wheat (Gegas et al., 2010).

This approach can be applied to almost any harvested part of a

plant and can be further refined. To relieve a bottleneck in

phenotyping rice spikelets, an integrated and fully automatic

machine was developed: the SEA unit can automatically thresh

rice panicles, score yield traits, with a capability up to 1440

plants per day and a mean absolute percentage error of less

than 5% (Duan et al., 2011). Similar approaches have been

used for maize kernels (Miller et al., 2017), stalks (Mazaheri

et al., 2019), for which candidate genes for vascular bundle and

rind traits were identified, and tassels (Gage et al., 2017).

By utilizing a low-cost flatbed scanner or 2D digital camera,

open-source and user-friendly image analysis software allows

increased accessibility. SmartGrain, a free-use software pack-

age, extracts seed size and shape (Tanabata et al., 2012), while

GrainScan provides information on both size- and color-related

traits (Whan et al., 2014).With their user-friendly graphical user in-

terfaces (GUIs), P-TRAP (AL-Tam et al., 2013) and PANorama

(Crowell et al., 2014) are recommended as flexible tools to

efficiently quantify both rice panicle traits and grain traits with

good accuracy. Running on the Android operational system, a

mobile application, SeedCounter, can measure grain number

and grain size with high efficiency (20–60 s for 50 grains)

(Komyshev et al., 2016).

Although they are robust and rapid, 2D imaging/scanning

approaches fail to capture much of the morphological and other

complexity commonly found in biological material. The pheno-

Seeder can extract 3D traits from individual seeds (Jahnke et al.,

2016), which can then be traced through to early seedlings.

Hyperspectral imaging can be used to infer grain cleanness

(Wallays et al., 2009), insect-damaged wheat kernels (Singh et al.,

2010), and grain protein content (Wang et al., 2004; Sun et al.,

2019), potentially combining both 3D structural and physiological

information in the future. An alternative approach to 3D

morphometrics involves repurposing existing biomedical

imaging techniques, such as X-ray microcomputed tomography

(micro-CT) imaging (Hughes et al., 2017). The application of

micro-CT toplant geneticswill require thedevelopment of bespoke

software as well as increased throughput (Hughes et al., 2019).

Ultimately, multidimensional seed traits must be combined with

genetic analysis tools (such as GWAS or QTL) to dissect the

genetic architecture of agronomic traits. Examples include sor-

ghum panicle structure (Zhou et al., 2019) and the protein

content of rice grains (Sun et al., 2019). Moreover, decreasing

the cost of these novel photonics-based phenotyping tools and

improving their reliability and extendibility could benefit crop

grain research in the future.
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HIGH-THROUGHPUT PHENOTYPING
ENHANCES GENETIC STUDIES

In recent years, many phenotyping techniques, for example, root

phenotyping (Atkinson et al., 2019), remote sensing (Maes

and Steppe, 2019), DL for plant stress (Singh et al., 2018),

and hyperspectral and other imaging technologies in

phytopathology (Mahlein et al., 2018), have been widely

discussed. However, the genetic studies and crop breeding

applications that have already benefited from these

technologies are rarely reviewed.
High-Throughput Phenotyping and Genetic Mapping

Here, we focus on genetic studies that have directly benefited

from mechanized phenotyping platforms (Table 2), both within

the laboratory and in the field. The phenotypic data listed in

Table 2 can be categorized into organ-/tissue-related traits

(Leiboff et al., 2015; Wu et al., 2019), plant morphological and

leaf architecture traits (Bac-Molenaar et al., 2015; Yang et al.,

2015; Condorelli et al., 2018), root anatomical traits (Courtois

et al., 2013; Shi et al., 2013; Xie et al., 2017), biomass- or

growth-related traits (Busemeyer et al., 2013b; Muraya et al.,

2017; Zhang et al., 2017), drought- and salinity response-

related traits (Honsdorf et al., 2014; Al-Tamimi et al., 2016; Guo

et al., 2018a; Condorelli et al., 2018), and yield-related traits

(Yang et al., 2014; Crowell et al., 2016; Zhou et al., 2019), which

have been used in genetic mapping and are discussed in the

following.

The size of shoot apical meristem (SAM) in the seedling stage cor-

relates with early flowering phenotypes in maize that decrease

the number of days to anthesis. Using a high-throughput im-

age-processing pipeline, maize SAMmorphological traits (shape

and size) were extracted in an association panel and a backcross

(BC) population. GWAS and QTL analyses demonstrated that the

microscopic SAMmorphology of seedlings is a predictor of adult

phenotypes and that novel genes associated with SAM morpho-

metric variation contribute to regulating SAM size (Leiboff et al.,

2015, 2016). Combing a high-throughput micro-CT-RGB imaging

system and GWASs, rice tiller traits and tiller growth traits as well

as plant traits of nine growth stages could be obtained, and a total

of 402 significantly associated loci were identified. In addition,

two loci containing associations with both vigor-related traits

and yield were identified for the further studies (Wu et al., 2019).

Leaves are primarily involved in photosynthesis and transpiration

(Wang et al., 2011). The size, shape, degree of leaf greenness

(chlorophyll content), and number of leaves determine a plant’s

photosynthetic and yield potential (Pérez-Pérez et al., 2010;

Wang et al., 2015). Two genetic mapping studies of leaf traits in

rice and maize were performed at the HRPF (Yang et al., 2015).

They conducted a GWAS of 29 leaf traits (i.e., leaf size, shape,

and color) in a panel of 533 rice accessions at three growth

stages using a self-designed high-throughput leaf scoring (HLS)

system and detected many loci, including nine loci containing

known leaf-related genes associated with leaf traits. In maize,

22 leaf architecture traits of an RIL population at 16 time points

were obtained and used for QTL mapping. Moreover, some leaf

traits (i.e., leaf angle and leaf length distribution) are predictive in-

dicators of final yield. Interestingly, a QTL hotspot for SDLC on
Mo
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chromosome 10 overlapped with a QTL hotspot (Zhang et al.,

2017) related to metabolic traits.

Root anatomical traits have important effects on the acquisition

of nutrients and water from the soil and transportation to the

aboveground parts of plants (Zhao et al., 2019). Uncovering the

genetic basis of root traits will be helpful for improving the

architecture of crop roots and promises to result in increases in

water and nutrient use efficiency (Atkinson et al., 2019). Topp

et al. (2013) dissected the genetic basis of 25 root-related traits

obtained from semiautomatic in vivo 3D imaging and a digital

phenotyping pipeline in a rice biparental mapping population.

Courtois et al. (2013) performed GWASs of 15 rice root traits

with a photography system, finding that most associations

were identified for deep root mass and the number of deep

roots, whereas no associations were detected for total root

biomass or deep root proportions. In Brassica napus, the

analysis of root architecture-related traits under high phosphate

(Pi) and low Pi conditions resulted in the identification of 38

QTLs (Shi et al., 2013).

Drought and salinity are two important types of abiotic stress in

many environments that can produce somewhat similar pheno-

typic effects (Munns and Tester, 2008; Munns et al., 2010).

Drought stress responses interact with many other

environmental parameters (e.g., temperature, relative air

humidity, air flow, light, soil quality and drying, nutrient

availability) (Granier et al., 2006) and are thus particularly

challenging to replicate under field conditions. The quantitative

measurement of drought resistance (DR) indicators (i.e., a leaf

rolling indicator) combined with high-throughput phenotyping

platforms provided an opportunity to measure both traditional

and novel DR traits and mine for DR-related genes (Table 2).

For example, based on LemnaTec’s Scanalyzer3D, 44 and 21

DR QTLs were identified in a set of wild barley introgression

lines (Honsdorf et al., 2014) and a wheat RIL population under

water stress (Parent et al., 2015), respectively. In a rice study,

51 i-traits and traditional DR traits were identified in an

association panel and an RIL population using a nondestructive

phenotyping facility, and 93% of loci found in GWASs were

colocalized with previously reported DR-related QTLs

and some loci containing known DR-related genes. Sixty-nine i-

trait–locus associations were identified by both GWAS and link-

age analysis. The role of a DR gene, OsPP15, was confirmed

by genetic transformation experiments, demonstrating that the

combination of high-throughput phenotyping and genetic

mapping is a promising novel approach for the discovery of

causal genes for DR (Guo et al., 2018a) and other traits.

Thanks to the various phenotyping platforms, sequencing tech-

nologies, GWASs (Huang et al., 2010), statistical methods for

genetic mapping (van Eeuwijk et al., 2010), many loci

controlling yield and its components in different crops have

been identified (Table 2). However, most of the work listed in

Table 2 is at the stage of QTL identification, and there are still

several issues that need to be addressed. The first question is

when we need high-throughput phenotyping, which depends

on the research objectives: (1) characterizing dynamic QTLs for

a complex trait at multiple developmental stages (Li and

Sillanp€a€a, 2015); (2) comparing QTLs for the same traits across

different large-scale species (e.g. rice and maize); (3) the
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Arabidopsis/
Crop Platform Extracted traits or features Population

Sample
sizea No. of markersb Methods Reference

Arabidopsis

thaliana

Phenoscope (INRA, France) Projected rosette area, relative

expansion rate

RIL 358 – LA Tisné et al., 2013

Arabidopsis

thaliana

An imaging system (11

cameras) acquiring root

images in Petri plates
(University of Wisconsin, USA)

Root tip angle, root

gravitropism

RIL/NIL 162/92 – LA Moore et al., 2013

Arabidopsis

thaliana

PHENOPSIS (Fondettes,

France)

Projected leaf area, fresh

weight, growth traits, and
growth model parameters

IAP 324 �215 000 GWAS Bac-Molenaar et al.,

2015

Arabidopsis
thaliana

Near-infrared reflectance
spectroscopic (NIRS, INRA,

France)

Oil, protein, carbon, and
nitrogen content

RIL 164 – LA Jasinski et al., 2016

Rice Rhizoscope phenotyping
platform (Montpellier, France)

15 traits: root system
architecture, tiller number, and

root/shoot biomass

IAP 167 16 664 GWAS Courtois et al., 2013

Rice 3D root imaging, GiA Roots 2D

and 3D image analysis

platform

2D and 3D root system

architecture (RSA) traits

RIL 171 – LA Topp et al., 2013

Rice High-throughput rice

phenotyping facility (HRPF,

Huazhong Agricultural
University, China)

Plant morphological traits,

biomass, and yield-related

traits

IAP 529 4 358 600 GWAS Yang et al., 2014

Rice LemnaTec3D Scanalyzer

system (University of
Nebraska, USA)

32 salinity-responsive

fluorescence color classes

IAP 373 26 258 GWAS Campbell et al., 2015

Rice High-throughput leaf scoring
(HLS) (Huazhong Agricultural

University, China)

29 leaf traits: leaf size, shape,
and color traits

IAP 529 4 358 600 GWAS Yang et al., 2015

Rice PANorama (Cornell University,
USA)

49 panicle phenotypes IAP/RIL 242/168 700 000 and 30 984 GWAS and
LA

Crowell et al., 2016

Rice Australian Plant Phenomics
Facility, The Plant Accelerator,

Australia

Relative plant growth rate,
transpiration rate and

transpiration use efficiency,

and select salinity tolerance

traits

IAP 553 700 000 GWAS Al-Tamimi et al., 2016

Rice High-throughput hyperspectral

imaging system (HHIS,

Huazhong Agricultural
University, China)

1540 hyperspectral indices,

chlorophyll content

IAP 529 4 358 600 GWAS Feng et al., 2017

Table 2. Trait and Genotype Variation Discovery Platforms.
(Continued on next page)
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Arabidopsis/
Crop Platform Extracted traits or features Population

Sample
sizea No. of markersb Methods Reference

Rice Tractor-based high-
throughput phenotyping (HTP,

Colorado State University,

USA)

Canopy height, canopy
temperature depression, and

three reflectance ratios

RIL 986 4046 LA Tanger et al., 2017

Rice HRPF and HLS 51 image-based traits (i-traits),

10 leaf color-related traits, 11

yield traits to reflect drought

response

IAP/RIL 507 4 358 600 and 2499 GWAS and

LA

Guo et al., 2018a

Rice High-throughput micro-CT-

RGB imaging system (HCR,
Huazhong Agricultural

University, China)

74 traits: tiller traits, tiller

growth traits, biomass, shoot
morphological and shoot

growth traits

IAP 234 2 863 169 GWAS Wu et al., 2019

Triticale Breedvision (University of
Applied Sciences Osnabr€uck,

Germany)

Biomass accumulation at three
developmental stages

DH 647 1710 GWAS Busemeyer et al.,
2013b

Wild barley Australian Plant Phenomics

Facility, The Plant Accelerator,

Australia

14 traits to detect drought

tolerance: shoot area, height,

growth, color, biomass, water-

use efficiency, etc.

ILs 47 1536 LA Honsdorf et al., 2014

Wheat Australian Plant Phenomics

Facility, The Plant Accelerator,
Australia

Biomass, leaf area, relative

growth rate, transpiration, and
water-use efficiency

RIL 250 – LA Parent et al., 2015

Hexaploid

wheat

A root imaging system and

RootNav software (University
of Nottingham, UK)

25 root seedling traits: root

angle, root length, root
number, etc., mature plant

height, grain yield, and

nitrogen (N) uptake

DH 94 – LA Atkinson et al., 2015

Bread wheat A germination paper-based

‘‘pouch andwick’’ phenotyping

system, coupled with digital
image analysis (University of

Nottingham, UK)

Seedling root traits, yield, yield

components, and phenology in

field trials

RIL 226 230 LA Xie et al., 2017

Wheat Unmanned Aerial Vehicle
(UAV) and a ground-based

platform (University of

Bologna, Italy)

Normalized Difference
Vegetation Index, leaf

chlorophyll content, phenology

score, leaf rolling, and dry
biomass, and select drought

adaptive indicator

IAP 248 17 721 GWAS Condorelli et al., 2018

Table 2. Continued (Continued on next page)

M
o
le
c
u
la
r
P
la
n
t
1
3
,
1
8
7
–
2
1
4
,
F
e
b
ru
a
ry

2
0
2
0
ª

T
h
e
A
u
th
o
r
2
0
2
0
.

1
9
9

T
h
e
P
e
rs
p
e
c
tiv

e
o
f
C
ro
p
P
h
e
n
o
m
ic
s

M
o
le
c
u
la
r
P
la
n
t

M
O
L
P
8
8
2



Arabidopsis/
Crop Platform Extracted traits or features Population

Sample
sizea No. of markersb Methods Reference

Wheat High-throughput plant

phenotyping system in

National Plant Phenomics
Centre (Aberystwyth

University, UK)

Plant area, height, water use,

and senescence and fitted

parameters

MAGIC

population

�1000 80 000 GWAS Camargo et al., 2018

Bread wheat A tractor-based
semiautomatic phenotyping

system (Beijing Forestry

University, China)

Sensor-based traits, yield-
related canopy architecture

IAP 221 68 958 GWAS Jiang et al., 2019

Sorghum Time-of-flight depth (Microsoft

Kinect) sensor and open-

source 3D image analysis
pipeline (Texas A&M

University, USA)

Shoot and leaf morphological

traits

RIL 98 10 787 for single QTL mappi

and 1209 for multiple-QTL

mapping

LA McCormick et al.,

2016

Sorghum Phenobot 1.0, an auto-steered
and self-propelled field-based

high-throughput phenotyping

platform equipped with stereo
RGB cameras (Iowa State

University, USA)

Plant height and stem diameter IAP 307 127 992 GWAS Salas Fernandez et al.,
2017

Sorghum RGB imaging box and semi-
automated imaging analysis

pipeline: Toolkit for

Inflorescence (Iowa State

University, USA)

Panicle shape and panicle size IAP 272 146 865 GWAS Zhou et al., 2019

Maize Axio Imager.Z10 (Carl Zeiss

Microscopy, LLC, Thornwood,
NY, USA) and image analysis

using ImageJ (Cornell

University, USA)

Shoot apical meristem (SAM)

morphology

IAP 369 1 281 000 GWAS Leiboff et al., 2015

Maize High-throughput plant

phenotyping system (Leibniz

Institute of Plant Genetics and
Crop Plant Research, IPK,

Germany)

Biomass, growth traits IAP 252 35 682 GWAS Muraya et al., 2017

Maize HRPF 106 traits: plant morphological
traits, leaf architecture traits,

color traits, biomass-related

traits, and growth traits

RIL 167 2496 LA Zhang et al., 2017

Table 2. Continued (Continued on next page)

2
0
0

M
o
le
c
u
la
r
P
la
n
t
1
3
,
1
8
7
–
2
1
4
,
F
e
b
ru
a
ry

2
0
2
0
ª

T
h
e
A
u
th
o
r
2
0
2
0
.

M
o
le
c
u
la
r
P
la
n
t

T
h
e
P
e
rs
p
e
c
tiv

e
o
f
C
ro
p
P
h
e
n
o
m
ic
s

M
O
L
P
8
8
2

ng



Arabidopsis/
Crop Platform Extracted traits or features Population

Sample
sizea No. of markersb Methods Reference

Maize PhenoArch phenotyping

platform (INRA, France)

Plant leaf area, fresh biomass,

transpiration rate

IAP 254 758 863 GWAS Prado et al., 2018

Maize Unmanned aerial vehicle

(Beijing Academy of

Agriculture & Forestry
Sciences, China)

Plant height and growth rate at

four growth stages

IAP 252 1 227 441 GWAS Wang et al., 2019

Large pepper

plants

SPICY: a sensor-to-plant

phenotyping device equipped
with RGB cameras and time-

of-flight depth sensor

(Wageningen University, The
Netherlands)

Leaf size, leaf area, leaf angle,

plant height

RIL 148 493 LA Gerie et al., 2012

Brassica napus Acquire root images using a

flatbed scanner and image
analysis using ImageJ

(Huazhong Agricultural

University, China)

Primary root length, lateral root

length, lateral root number,
lateral root density, and

biomass traits under low Pi and

high Pi conditions

DH 190 798 LA Shi et al., 2013

Brassica napus High-throughput plant
phenotyping system (Leibniz

Institute of Plant Genetics and

Crop Plant Research, IPK,

Germany)

Estimated biovolume,
projected leaf area, early plant

height, color uniformity

IAP 477 16 311 GWAS Knoch et al., 2019

Table 2. Continued
IAP, inbred association panel (consists of a set of inbred lines); RIL, recombinant inbred lines; DH, double haploid population; BC, backcross population; NIL, near isogenic lines; Ils, introgression lines;

MAGIC, multiparent advanced generation inter-cross. LA, linkage analysis; GWAS, genome-wide association study; –, not mentioned in the reference.
aThe values separated by slash (/) indicate sample size corresponding to multiple populations.
bThe values separated by slash (/) indicate marker numbers corresponding to multiple populations.
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Molecular Plant The Perspective of Crop Phenomics
measurements of some traits are subjective and error prone (e.g.,

visual scoring of leaf rolling), or some traits cannot be manually

measured nondestructively (e.g., digital biomass, root system

architectures). The second question is how to utilize extensive

lists of phenotypic traits in genetic mapping. One good example

is performing principal component (PC) analysis to extract PCs of

a specific phenotypic trait category and combining the PC scores

and GWAS to identify a gene controlling rice architecture (Yano

et al., 2019). The third question is how to rapidly clone

candidate genes from the large number of QTLs. One solution

is to combine genetic transformation technology, CRISPR/Cas9

technology, other omics data and statistical methods for

speeding up QTL cloning (e.g., QTG-seq; Zhang et al., 2019a).

This information could be used in omics-based strategies as

well as in systemic and synthetic biology in molecular design

breeding or molecular module programs and will greatly facilitate

future agronomic improvements (Figure 2A) (Li et al., 2018; Wing

et al., 2018; Zhang et al., 2019b).

High-Throughput Phenotyping and Genome Selection

Genome selection (GS) uses genome-wide markers and statisti-

cal modeling to select complex traits controlled by many alleles

with small effects. It was first applied to cattle breeding

(Meuwissen et al., 2001), but with the ever-decreasing cost of

sequencing in recent years, GS is emerging as a powerful tool

for estimating breeding values in crop breeding (Taylor, 2014).

Its advantage is in predicting how crops will perform before a

field test. To develop an accurate and robust predictive model,

huge amounts of genotype and phenotype data from

individuals or lines are necessary (Meuwissen et al., 2001). With

the development of next-generation sequencing technology,

markers can be easily and accurately obtained. However, pheno-

typing represents a serious bottleneck.

High-throughput phenotyping platforms have been demon-

strated to enhance GS in grain crops. For example, an UAV car-

rying a remote-sensing unit with either an RGB or near-infrared,

green and blue (NIR-GB) camera has been used for the high-

throughput phenotyping of sorghum plant height and different

genomic prediction models (Watanabe et al., 2017). UAV

remote sensing will be an important and indispensable tool for

high-throughput genomics-assisted crop breeding due to its rela-

tively low cost and easy operation (Watanabe et al., 2017). Data

on secondary traits (canopy temperature and green and red

NDVI) obtained with remote sensing could be used in wheat GS

to improve the prediction accuracy for grain yield (Rutkoski

et al., 2016). Moreover, the International Maize and Wheat

Improvement Center (CIMMYT) found that GS strategies are a

tractable way for crop breeders to increase the rate of genetic

gain and select superior higher-yielding crop varieties more effi-

ciently after investigating several GS methods combining dy-

namic high-throughput phenotyping data and 2254 genotyping-

by-sequencing (GBS) markers of 1170 advanced wheat lines

(Crain et al., 2018).

Sensor-Based Phenotyping-Assistant Breeding

Image-based phenotyping technologies can rapidly and accu-

rately quantify biotic/abiotic resistance traits and grain yield and

quality and have a high potential to accelerate crop breeding. A

comparison of a traditional long-term breeding experiment with
202 Molecular Plant 13, 187–214, February 2020 ª The Author 2020.
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a more recent technology-supported example illustrates this. In

Illinois in 1896, Hopkins began long-term directional recurrent

selection for oil concentration in maize, increasing the oil content

from 4.69% to 20.37% over approximately 100 generations

(Dudley and Lambert, 2004), while Song et al. (1999) developed

synthetic populations in China in which the oil content

increased from 4.71% to 15.55% over just 18 cycles of

selection (Song and Chen, 2004). This relative acceleration can

be largely attributed to MRI and NIR spectroscopy.

Another example involves double haploid (DH) technology, which

is already widely used in commercial crop breeding programs

(Ishii et al., 2016). There is an ongoing need for better

discrimination of haploid and hybrid kernels. An automatic

screening system for maize haploid kernel identification based

on the xenia effect value of the oil content and nuclear

magnetic resonance (NMR) detection, developed by China

Agricultural University, identified in vivo-induced haploid seeds

with a mean accuracy of over 90% (Liu et al., 2012), which

would favorably accelerate the breeding process. Furthermore,

digital imaging (Yang et al., 2014; Liang et al., 2016; Makanza

et al., 2018) can rapidly assess yield- and quality-related grain

traits. For example, a high-throughput maize kernel trait scorer

had an efficiency that was seven times greater than that of

manual operators (Liang et al., 2016). Furthermore, maize

vascular bundles, as key transportation paths for delivering

water, mineral nutrients, and organic substances, can be

measured by X-ray micro-CT (Zhang et al., 2018).

Phenotyping is a key informant for establishing the accuracy of

statistical models in conventional breeding, marker-assisted se-

lection (MAS), or GS; however, high-throughput field phenotyping

is still a bottleneck in these fields (Araus et al., 2018). Indeed,

developing new varieties and focusing on cost-effective returns

are key objectives of breeding companies and breeders. To

improve the management of breeding data and optimize

breeding programs, many commercial plant breeding software

programs have been developed, such as AGROBASEGeneration

II (https://www.agronomix.com/) and Plant Research Information

Sharing Manager (PRISM, http://www.sytseed.com/). However,

to date, most commercial breeding software has limited function-

ality. Thus, the development of multifunctional breeding software

that integrates genomes, phenotypes, environments, data man-

agement, and multiomics data analysis and can perform genetic

mapping is urgently needed for crop breeding.
CHALLENGES AND FUTURE
PERSPECTIVES

With the aim of enabling cooperation by fostering communication

among stakeholders in academia, industry, government, and the

general public, 17 institutions established the IPPN in November

2015, increasing to 44 in 2019 (https://www.plant-phenotyping.

org/). The IPPNcarried out regular surveys of trends in croppheno-

typing, and key findingswere that (1) static phenotyping infrastruc-

tures were concentrated in Europe and Australia (Figure 3A) but

with increasing investments in the USA and China; (2) the

infrastructures have developed rapidly over the last 5 years

(Figure 3B); and (3) over 82 mechanized indoor phenotyping

platforms have been established across the globe, with the

https://www.agronomix.com/
http://www.sytseed.com/
https://www.plant-phenotyping.org/
https://www.plant-phenotyping.org/


Figure 2. The Loop of Crop Phenotype-to-Genotype and Image Data Analysis.
(A) Linking crop phenotyping to functional genomics studies and crop improvement with multiomics: The high-throughput and multiscale phenotyping

platform (2) can obtain the dynamic phenotypic traits of large crop genetic populations (1). The combination of phenotypic data (3) and other omics data

(i.e., genomics, transcriptomics, proteomics, metabolomics) (4) can be used in mining QTL/genes via QTL mapping and GWASs (5), and combined with

genetic transformation techniques to benefit crop genetic improvement (7).

(B) The workflow of image data analysis: (1) image raw data obtained; (2) image preprocessing; (3) image segmentation; (4) feature extraction; (5) feature

preprocessing; (6) key feature selection; (7) data mining; (8) data management.
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largest proportion of these infrastructures within controlled

environments (59%) and field platforms accounting for only 18%

(Figure 3C). Referring to the three surveys in 2014–2018, in our

opinion, the key topics were root phenotyping, abiotic stress,

field phenotyping, data management, and costs (Figure 3D),

which are challenges that are discussed in the following sections.

In addition, we searched for the topics of crop phenomics or

high-throughput crop phenotyping in Web of Science, and
Mo

MOLP 8
observed the similar trends in the number of published papers

(Figure 3B) and the most mentioned species (Figure 3E).
Future Root Phenotyping in the Field: A Need for
Innovation Below the Ground

An effective methods for assessing the RSA is still simply to dig

up the root system and shake or wash off the soil; often termed
lecular Plant 13, 187–214, February 2020 ª The Author 2020. 203
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Figure 3. The Current Status of Global Phenotyping.
(A) The distributional map of plant phenotyping infrastructures around the world.

(B) Number of phenotyping achievements and number of published crop phenomics-related papers in the past 20 years.

(C) Classification of infrastructures.

(D) Summary of species and topics from IPPN surveys (2014 and 2016). Reference: database of the International Plant Phenotyping Network (IPPN,

https://www.plant-phenotyping.org/ippn-survey_2016).

(E) The distribution map of crop phenomics or high-throughput crop phenotyping-related papers by research field, region, document type, and species

(searched in Web of Science).
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‘‘shovelomics’’ when scaled to the field level (Trachsel et al.,

2010). Although this method is destructive and somewhat

unpleasantly messy, image acquisition can be relatively rapid

(up to 5000 images/h), and those images can be rich in trait
204 Molecular Plant 13, 187–214, February 2020 ª The Author 2020.
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information (39 root traits). Other root phenotyping methods

include, for example, the core-break method, which was pro-

posed to obtain the root depth (Wasson et al., 2017) and

minirhizotrons with imaging sensors to observe root growth

https://www.plant-phenotyping.org/ippn-survey_2016
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(Svane et al., 2019). But both the core-break and minirhizotrons

methods can only detect limited roots, and the root

measurements were subject to the sample positions. Some

nondestructive detection methods, such as ground-penetrating

radar (Delgado et al., 2017) and electrical impedance

tomography (Corona-Lopez et al., 2019), could be used to

phenotype root biomass and root development. However, the

spatial resolution of both methods is much lower (�cm/pixel),

and it is hard to detect individual fine roots.

To date, nondestructive root phenotyping in the field remains

a challenge due to a lack of suitable technology. In an attempt

to solve this problem, the US Department of Energy funded

the ROOTS project in 2017 (https://arpa-e.energy.gov/?

q=programs/roots), which aims to evaluate and develop novel

approaches, such as thermoacoustics tomography (TAT),

associated particle imaging (API) using neutrons, tomographic

electrical rhizosphere imaging (TERI), low-cost X-ray CT, and

backscatter X-ray platforms, to dynamically image RSA. The

long-term justification for the investment is associated with the

production of crops that increase carbon uptake and decrease

N2O emissions under field conditions. As the advancement of

UAV and sensor techniques currently benefits canopy phenotyp-

ing in the field, we believe that breakthrough technologies could

provide similar benefits below ground.

State-of-the-Art Phenotyping Techniques for Abiotic
Stress

The genetic architecture of abiotic tolerance, such as DR, is

complex and influenced by many alleles with small effects

(Fukao and Xiong, 2013). Thus, the search for generic drought

tolerance using single major-effect genes has almost always

been disappointing (Passioura, 2012). Several issues still need

to be addressed with regard to high-throughput phenotyping

platforms and high-throughput image analysis pipelines that

can be used to extract an extensive list of 2D and 3D phenotypic

traits related to stress and have the potential for understanding

tolerance over time:

(1) Can the complexities of tolerance be decomposed into

simple and more heritable traits? Using nondestructive

phenotyping and image-based traits, thismay be possible;

complex DR, for instance, can be dissected into highly

heritable and simple image-based traits (i-traits), including

digital stay-green and digital leaf-rolling traits (Guo et al.,

2018a). If the loci (genes or QTLs) identified by these

simple traits can also affect yield under different stress

scenarios, then the effects of the identified loci could

benefit crop breeding (Tardieu and Tuberosa, 2010).

(2) How do root architectures contribute to yield and abiotic

stress tolerance? The gene DRO1, for example, which

controls the root growth angle and depth, has been used

to increase rice yield under drought conditions by back-

crossing with a shallow-rooting rice cultivar (Uga et al.,

2013). However, variation in root architecture and

function has not often been directly exploited in

breeding, largely due to the huge challenge in assessing

root traits.

(3) Can DL resolve the data analysis bottleneck? DL is a

versatile tool that can be used tomake sense of large data-

sets for crop stress ICQP (identification, classification,
Molec
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quantification, and prediction) (Singh et al., 2018).

However, due to the outstanding identification of

diseases, most DL models have been applied in biotic

stress and disease detection. In the future, with different

sensor technologies (hyperspectral, thermal, CT,

terahertz, MRI, radar, etc.) and large multiscale (lab-to-

field) phenotypic datasets that include weather and other

environmental data, DL could also be used to quantify

abiotic stress and predict the loci that control stress

tolerance through integration with genetic information

and other omics information. This approach will likely

work best with large and well-annotated datasets,

making the case for open data.
Field Phenotyping Bottleneck and Future Perspectives

In the previous section, we discussed the applications of ground-

based, UAV, and handheld field phenotyping techniques, which

have advantages and limitations. With the rapid development of

UAV and peripheral equipment, many novel platforms for low-

altitude remote sensing are rapidly emerging, such as mooring

UAV platforms, cameras with 100 000 000 pixels, multisensor in-

tegrated platforms, miniaturization, and simplification UAV plat-

forms. The UAV platform will partially replace the ground-based

phenotyping platform and will likely be widely deployed based

on new technologies in the future. In addition, integrated special

UAV image processing and standardized analytical software will

likely become available for a broader range of users, allowing

nonexperts to process and analyze hyperspectral, thermal, or

LiDAR data, for example.

For ground-based phenotyping, one of the trends is the develop-

ment of field-intelligent robots, such as BreedVision (Busemeyer

et al., 2013a). Equippedwithmultiple sensors integrated within an

imaging chamber to ensure good image quality and automatic

navigation, these types of robots are flexible to move to

phenotype different fields and in the future could collaboratively

work in a field. In terms of handheld phenotyping tools, one

trend is to integrate multiple sensors into one portable device

and develop on-chip data analysis software to obtain and

managemore traits together. Another trend is to decrease human

intervention and add data standardization processes to improve

measurement reliability and efficiency. With the advancements in

artificial intelligent analysis techniques, fifth-generation mobile

networks, and cloud-based technologies in recent years, more

smart ‘‘pocket’’ phenotyping tools will likely be developed and

change manual field phenotyping, which has been around for

thousands of years. In addition, to achieve a real sense of

‘‘cost-effective phenotyping’’, the trade-off between investment

of phenotyping techniques and manpower costs should be

considered, which mainly depend on the different objectives

(Reynolds et al., 2019b).

Data collection in the field using high-throughput technology has

undergone rapid advances in recent years. However, the limiting

factor now is how to manage and mine the vast amounts of data

collected from fields through high-throughput technology. First,

the biological objective of data collection should be clearly

stated. Next, robust and user-friendly postprocessing and anal-

ysis tools for processing and interpreting raw data are urgently

needed and should be improved (Araus and Cairns, 2014). For
ular Plant 13, 187–214, February 2020 ª The Author 2020. 205
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example, combining DL and multiple optical images obtained

under different field conditions will create robust models for

disease phenotyping and even the early detection of plant

stress (Singh et al., 2018).

Each year, the thousands of phenotyping experiments in environ-

mentally controlled growth facilities or in the field will produce

large amounts of phenotypic data. However, the replication of re-

sults by the same researcher or the reproducibility of results by

different laboratories in independent experiments are often not

satisfactory because of the unexplained variation of environ-

ments (Poorter et al., 2012). Thus, environmental factors are

vital and should receive at least the same amount of attention

as the traits that are measured, which leads to the next

question: how to measure all the environmental impacts?

Envirotyping, defined as a full set of next-generation high-

throughput accurate envirotyping technologies, could help to

address this issue (Xu, 2016). Moreover, integrating multityping

information, the genotyping 3 environment 3 management

(G3E3M) interaction could also be investigated, and predictive

phenomics would be possible (Xu, 2016; Araus et al., 2018). In

recent years, crop yield growth (genetic gain) has been slowing

down, affected by several factors, for example, population,

genotype, heritability, GS model, and breeding scheme (Xu

et al., 2020). Integrated with optimized experimental design,

high quality of field trials, robust crop model, envirotyping, and

other strategies, high-throughput and accurate phenotyping will

improve the heritability and potential for genetic gain (Araus

et al., 2018).
Image Data Analysis and Big Data Organization

The imaging data formats vary widely depending on the different

imaging sensors (e.g., RGB, thermal, hyperspectral, CT;

Figure 2B), thus it is challenging to conclude a common

process of image analysis. Although phenotypic data analysis is

not the focus of this review, we summarize a workflow of image

data analysis (Figure 2B): (1) image preprocessing to clip or

merge raw images, enhance image contrast, remove the noise,

and transform the space to get the image easy to handle in

the next step; (2) image segmentation (e.g., threshold,

morphological processing) to obtain the objects of interest from

the background; (3) feature extraction to get the raw features

according to the experimental targets, which mainly include

grayscale, gradient, edge, counter, shape, size, texture, corner

point, color features, and so on; (4) after extraction of huge

amounts of raw features, feature preprocessing and traits

selection should be adopted to filter and explore the key

features; (5) data mining, for example, building dynamic growth

using mechanistic models (Chen et al., 2014) or using DL (e.g.,

deep neural networks [DNNs] or recurrent neural networks

[RNNs]); (Singh et al., 2018) to explore more spatial and

temporal information. One challenge of using DL is an

insufficient number of training datasets, which could be smartly

resolved by citizen science (Giuffrida et al., 2018). There are

some reviews on the software and algorithms of image analysis

(Fiorani and Schurr, 2013; Perez-Sanz et al., 2017; Atkinson

et al., 2019). Interestingly, an online database referencing more

than 90 plant image analysis software solutions would benefit

users to quickly find the proper solutions and has been

recommended (Lobet et al., 2013). After huge amounts of data
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have been obtained, the next question is how to manage the

Big Data?

To manage and integrate the extensive amounts of data from

multioptical and other sensors, Wilkinson et al. (2016) proposed

the FAIR (findable, available, identifiable, and reusable)

principle to allow the finding and reuse of data across

different individuals or groups, which means all the necessary

metadata, such as resource and data acquisition information,

measurement protocols, data description, and environmental

conditions, should be clearly addressed and capable of being

accessed. According to the FAIR principle, several efforts have

also been made for data management and analysis, for

example, PHENOPSIS DB (Fabre et al., 2011) and CropSight

(Reynolds et al., 2019a).

However, phenotypic data are rarely reused, in contrast to

genomic and other omics data. Much of the phenotypic data—

despite complying with the FAIR criteria—are not openly acces-

sible, and we encourage the development of OPEN data infra-

structures or the publication of primary data with DOIs. This

would facilitate data reuse, and equally importantly, the develop-

ment, testing, and comparison of technologies. To pave the way

for data exchange and reuse, some common management stan-

dards and data formats should be clearly defined. One good case

for plant biology is iPlant cyberinfrastructure (CI), an open-source

project supported by the United States National Science Founda-

tion (NSF), which provides high-performance computing, easy-

to-use bioinformatics software, and large data access, and

have been facilitating collaborations across the diversity of multi-

disciplines, such as plant biology, bioinformatics, and computer

science, etc. (Goff et al., 2011). A document of Minimum

Information About a Plant Phenotyping Experiment (MIAPPE)

was proposed and recommended as a necessary metadata set

with ISA-Tab formatting, which mainly included phenotypic

data, environments, experimental design, resource, and so on

(�Cwiek-Kupczy�nska et al., 2016). To support data annotation

and avoid ambiguous description, ontology is the key to

facilitate dataset construction. The Crop Ontology of the

Generation Challenge Program was proposed by the

Consultative Group on International Agricultural Research

(CGIAR), aiming to develop an online integrated G-P (genotypic

and phenotypic) data management tool across several species

and several international agricultural research institutes

(Shrestha et al., 2012). Oellrich et al. (2015) used shared

ontologies, annotation standards, and shared formats to

annotate 2741 genotypes with 2023 unique entity-quality

statements and achieve cross-taxon phenotypic data analysis

(e.g., determine the same pathway both in Arabidopsis root tip

gravitropism and inner ear defect in humans). More open-source

databases or software, such as Phenobook (open software for

data collection in plant breeding; Crescente et al., 2017),

Planteome database (an integrated ontology resource; Cooper

et al., 2018), BrAPI (an application programming interface for

plant breeding; Selby et al., 2019), were developed to benefit

both basic plant biology research and plant breeding. Some

reviews describe data standardizing using MIAPPE (Bolger

et al., 2019) and data integration (Coppens et al., 2017).

Crop functional genomics has entered the large-scale and mul-

tiomic stages. There is growing interest in combining phenomics
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data with genomic data and other omics data, such as metabolo-

mics, proteomics, and transcriptomics. Data storage should be

standardized to facilitate the joint analysis and reanalysis of

data from independent experiments or interconnections with

other available biological databases and resources (Billiau

et al., 2012). Comprehensive metadata description and agreed-

upon ontologies are therefore needed to construct a database

of multiomics information. However, the vast amounts of

collected data are scattered as small pieces in many labs and

vary in format and quality (Li et al., 2018). Data sharing and

standardization across different communities remain a big

challenge. Another challenge is the lack of funding and data

infrastructure to handle these data (Bolger et al., 2019). To face

the challenges, synergism efforts should be made and

integrated resources and bioinformatics technologies will

facilitate crop functional genomics and crop breeding efforts.

Key to Success in the Future Challenge: Talent and Joint
Cooperation

In the coming decade, to address the challenges discussed earlier,

emphasis should be placed on innovative techniques below the

ground, state-of-the-art methods to dissect abiotic stress or other

complex traits, intelligent and easy-to-promote field phenotyping,

data standardization, andmultiomics data dissection. Besides, the

creation of phenomics talent should also be considered, even

before construction of a phenotyping facility. Unfortunately,

phenotypic experts are scarce, and the loss of researchers (e.g.,

image data analysis specialists) is common nowadays. To relieve

the bottleneck, in our opinion, requires the following: (1) technical

innovation: the value of traditional agriculture should be improved

to attract more talent from industry; (2) more multidisciplinary

training in phenomics, particularly in agricultural university or col-

lege; Huazhong Agricultural University (Wuhan, China) plans to

initiate a new major of Intelligent Agriculture in 2020, which we

believe will promote multidisciplinary talent in the future; (3) data

sharing: sharing the right data and the right questions to attract

more computer specialists to help solve problems for free, even

if the solutions are not perfect (Tsaftaris and Scharr, 2018).

Due to the fast development of sensor techniques, machine vision,

automation technology, fifth-generation mobile networks, cloud-

based technologies, and artificial intelligence (DL), phenotyping

has shown great power to promote fundamental crop research

and crop breeding. In addition to the technical advances and talent

cultivation, some international cooperation would also relieve the

challenges. The European phenotyping community projects,

including EPPN2020 (https://eppn2020.plant-phenotyping.eu/)

and COST Action (http://www.cost.eu/COST_Actions/), have

shown the power of connecting phenotyping and various omics

scientists to promote crop breeding. To promote the next green

revolution in crop breeding, the development of an International

Crop Phenome Project (ICPP) should also be encouraged. To

achieve this goal, we call for the coordinated efforts of multiomics

international networks and diverse disciplines and coordinated

financial support within many countries.
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Pérez-Pérez, J.M., Esteve-Bruna, D., and Micol, J.L. (2010). QTL

analysis of leaf architecture. J. Plant Res. 123:15–23.

Perez-Sanz, F., Navarro, P.J., and Egea-Cortines, M. (2017). Plant

phenomics: an overview of image acquisition technologies and

image data analysis algorithms. Gigascience 6:1–18.

Pflugfelder, D., Metzner, R., van Dusschoten, D., Reichel, R., Jahnke,

S., and Koller, R. (2017). Non-invasive imaging of plant roots in

different soils using magnetic resonance imaging (MRI). Plant

Methods 13:102.

Pieruschka, R., and Schurr, U. (2019). Plant phenotyping: past, present,

and future. Plant Phenomics https://doi.org/10.34133/2019/7507131.

Pineros, M.A., Larson, B.G., Shaff, J.E., Schneider, D.J., Falcao, A.X.,

Yuan, L., Clark, R.T., Craft, E.J., Davis, T.W., Pradier, P.L., et al.

(2016). Evolving technologies for growing, imaging and analyzing 3D

root system architecture of crop plants. J. Integr. Plant Biol.

58:230–241.

Poorter, H., Fiorani, F., Stitt, M., Schurr, U., Finck, A., Gibon, Y.,

Usadel, B., Munns, R., Atkin, O.K., Tardieu, F., et al. (2012). The

art of growing plants for experimental purposes: a practical guide for

the plant biologist. Funct. Plant Biol. 39:821–838.

Pound, M.P., French, A.P., Atkinson, J.A., Wells, D.M., Bennett, M.J.,

and Pridmore, T. (2013). RootNav: navigating images of complex root

architectures. Plant Physiol. 162:1802–1814.

Prado, S.A., Cabrera-Bosquet, L., Grau, A., Coupel-Ledru, A., Millet,

E.J., Welcker, C., and Tardieu, F. (2018). Phenomics allows

identification of genomic regions affecting maize stomatal

conductance with conditional effects of water deficit and evaporative

demand. Plant Cell Environ. 41:314–326.

Reuzeau, C., Pen, J., Frankard, V., de Wolf, J., Peerbolte, R.,

Broekaert, W., and van Camp, W. (2005). TraitMill: a discovery

engine for identifying yield-enhancement genes in cereals. Mol. Plant

Breed. 3:753–759.

Reynolds, D., Ball, J., Bauer, A., Davey, R., Griffiths, S., and Zhou, J.

(2019a). CropSight: a scalable and open-source information

management system for distributed plant phenotyping and IoT-

based crop management. Gigascience 8:giz009.

Reynolds, D., Baret, F., Welcker, C., Bostrom, A., Ball, J., Cellini, F.,

Lorence, A., Chawade, A., Khafif, M., Noshita, K., et al. (2019b).

What is cost-efficient phenotyping? Optimising costs for different

scenarios. Plant Sci. 282:14–22.
212 Molecular Plant 13, 187–214, February 2020 ª The Author 2020.

MOLP 882
Rogers, E.D., Monaenkova, D., Mijar, M., Nori, A., Goldman, D.I., and

Benfey, P.N. (2016). X-Ray computed tomography reveals the

response of root system architecture to soil texture. Plant Physiol.

171:2028–2040.

Ruiz-Garcia, L., Lunadei, L., Barreiro, P., and Robla, J.I. (2009). A

review of wireless sensor technologies and applications in agriculture

and food industry: state of the art and current trends. Sensors

9:4728–4750.

Rutkoski, J., Poland, J., Mondal, S., Autrique, E., Perez, L.G., Crossa,

J., Reynolds, M., and Singh, R. (2016). Canopy temperature and

vegetation indices from high-throughput phenotyping improve

accuracy of pedigree and genomic selection for grain yield in wheat.

Genes Genomes Genet. 6:2799–2808.

Sadeghi-Tehran, P., Sabermanesh, K., Virlet, N., and Hawkesford,

M.J. (2017). Automated method to determine two critical growth

stages of wheat: heading and flowering. Front. Plant Sci. 8:252.

Salas Fernandez, M.G., Bao, Y., Tang, L., and Schnable, P.S. (2017). A

high-throughput, field-based phenotyping technology for tall biomass

crops. Plant Physiol. 174:2008–2022.

Sakamoto, T., Shibayama, M., Kimura, A., and Takada, E. (2011).

Assessment of digital camera-derived vegetation indices in

quantitative monitoring of seasonal rice growth. ISPRS J.

Photogramm. Remote Sens. 66:872–882.

Schmittgen, S., Metzner, R., Van Dusschoten, D., Jansen, M., Fiorani,

F., Jahnke, S., Rascher, U., and Schurr, U. (2015). Magnetic

resonance imaging of sugar beet taproots in soil reveals growth

reduction and morphological changes during foliar Cercospora

beticola infestation. J. Exp. Bot. 66:5543–5553.

Schork, N.J. (1997). Genetics of complex disease - approaches,

problems, and solutions. Am. J. Respir. Crit. Care Med. 156:S103–

S109.

Selby, P., Abbeloos, R., Backlund, J.E., Salido, M.B., Bauchet, G.,

Benites-Alfaro, O.E., Birkett, C., Calaminos, V.C., Carceller, P.,

Cornut, G., et al. (2019). BrAPI—an application programming

interface for plant breeding applications. Bioinformatics 35:4147–

4155.

Shahzad, Z., Kellermeier, F., Armstrong, E.M., Rogers, S., Lobet, G.,

Amtmann, A., and Hills, A. (2018). EZ-Root-VIS: a software pipeline

for the rapid analysis and visual reconstruction of root system

architecture. Plant Physiol. 177:1368–1381.

Shi, L., Shi, T., Broadley, M.R., White, P.J., Long, Y., Meng, J., Xu, F.,

and Hammond, J.P. (2013). High-throughput root phenotyping

screens identify genetic loci associated with root architectural traits

in Brassica napus under contrasting phosphate availabilities. Ann.

Bot. 112:381–389.

Shi, C., Zhao, L., Zhang, X., Lv, G., Pan, Y., and Chen, F. (2019). Gene

regulatory network and abundant genetic variation play critical roles in

heading stage of polyploidy wheat. BMC Plant Biol. 19:6.

Shibayama, M., Sakamoto, T., Takada, E., Inoue, A., Morita, K.,

Takahashi, W., and Kimura, A. (2015a). Continuous monitoring of

visible and near-infrared band reflectance from a rice paddy for

determining nitrogen uptake using digital cameras. Plant Prod. Sci.

12:293–306.

Shibayama, M., Sakamoto, T., Takada, E., Inoue, A., Morita, K.,

Takahashi, W., and Kimura, A. (2015b). Estimating paddy rice leaf

area index with fixed point continuous observation of near infrared

reflectance using a calibrated digital camera. Plant Prod. Sci.

14:30–46.

Shrestha, R., Matteis, L., Skofic, M., Portugal, A., McLaren, G.,

Hyman, G., and Arnaud, E. (2012). Bridging the phenotypic and

genetic data useful for integrated breeding through a data annotation

https://doi.org/10.34133/2019/7507131


The Perspective of Crop Phenomics Molecular Plant
using the Crop Ontology developed by the crop communities of

practice. Front. Physiol. 3:326.

Singh, C.B., Jayas, D.S., Paliwal, J., and White, N.D.G. (2010).

Identification of insect-damaged wheat kernels using short-wave

near-infrared hyperspectral and digital colour imaging. Comput.

Electron. Agric. 73:118–125.

Singh, A.K., Ganapathysubramanian, B., Sarkar, S., and Singh, A.

(2018). Deep learning for plant stress phenotyping: trends and future

perspectives. Trends Plant Sci. 23:883–898.

Song, T.M., Kong, F., Li, C.J., and Song, G.H. (1999). Eleven cycles of

single kernel phenotypic recurrent selection for percent oil in

Zhongzong no. 2 maize synthetics. J. Genet. Breed. 53:31–35.

Song, T.M., and Chen, S.J. (2004). Long term selection for oil

concentration in five maize populations. Maydica 49:9–14.

Sun, D., Cen, H., Weng, H., Wan, L., Abdalla, A., El-Manawy, A.I., Zhu,

Y., Zhao, N., Fu, H., Tang, J., et al. (2019). Using hyperspectral

analysis as a potential high throughput phenotyping tool in GWAS for

protein content of rice quality. Plant Methods 15:54.

Svane, S.F., Jensen, C.S., and Thorup-Kristensen, K. (2019).

Construction of a large-scale semi-field facility to study genotypic

differences in deep root growth and resources acquisition. Plant

Methods 15:26.

Tanabata, T., Shibaya, T., Hori, K., Ebana, K., and Yano, M. (2012).

SmartGrain: high-throughput phenotyping software for measuring

seed shape through image analysis. Plant Physiol. 160:1871–1880.

Tanger, P., Klassen, S., Mojica, J.P., Lovell, J.T., Moyers, B.T.,

Baraoidan, M., Naredo, M.E., McNally, K.L., Poland, J., Bush,

D.R., et al. (2017). Field-based high throughput phenotyping rapidly

identifies genomic regions controlling yield components in rice. Sci.

Rep. 7:42839.

Tardieu, F., and Tuberosa, R. (2010). Dissection andmodelling of abiotic

stress tolerance in plants. Curr. Opin. Plant Biol. 13:206–212.

Taylor, J.F. (2014). Implementation and accuracy of genomic selection.

Aquaculture 420-421:S8–S14.

Tian, F., Bradbury, P.J., Brown, P.J., Hung, H., Sun, Q., Flint-Garcia,

S., Rocheford, T.R., McMullen, M.D., Holland, J.B., and Buckler,

E.S. (2011). Genome-wide association study of leaf architecture in

the maize nested association mapping population. Nat. Genet.

43:159–162.
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